These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25068551)
1. Ratiometric fluorescent biosensor for hyaluronidase with hyaluronan as both nanoparticle scaffold and substrate for enzymatic reaction. Xie H; Zeng F; Wu S Biomacromolecules; 2014 Sep; 15(9):3383-9. PubMed ID: 25068551 [TBL] [Abstract][Full Text] [Related]
2. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers. Hu Q; Zeng F; Wu S Biosens Bioelectron; 2016 May; 79():776-83. PubMed ID: 26774093 [TBL] [Abstract][Full Text] [Related]
3. Cationic Conjugated Polymer/Hyaluronan-Doxorubicin Complex for Sensitive Fluorescence Detection of Hyaluronidase and Tumor-Targeting Drug Delivery and Imaging. Huang Y; Song C; Li H; Zhang R; Jiang R; Liu X; Zhang G; Fan Q; Wang L; Huang W ACS Appl Mater Interfaces; 2015 Sep; 7(38):21529-37. PubMed ID: 26331442 [TBL] [Abstract][Full Text] [Related]
4. A dual-readout nanosensor based on biomass-based C-dots and chitosan@AuNPs with hyaluronic acid for determination of hyaluronidase. Liu W; Ding F; Wang Y; Lu Z; Zou P; Wang X; Zhao Q; Rao H Luminescence; 2020 Feb; 35(1):43-51. PubMed ID: 31430048 [TBL] [Abstract][Full Text] [Related]
5. A high sensitivity background eliminated fluorescence sensing platform for hyaluronidase activity detection based on Si QDs/HA-δ-FeOOH nanoassembly. Li X; Wu T; Fu Y; Ding X; Li Z; Zhu G; Fan J Biosens Bioelectron; 2020 Feb; 150():111928. PubMed ID: 31818757 [TBL] [Abstract][Full Text] [Related]
6. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Cheng D; Han W; Yang K; Song Y; Jiang M; Song E Talanta; 2014 Dec; 130():408-14. PubMed ID: 25159428 [TBL] [Abstract][Full Text] [Related]
7. Cationic Carbon Dots for Modification-Free Detection of Hyaluronidase via an Electrostatic-Controlled Ratiometric Fluorescence Assay. Yang W; Ni J; Luo F; Weng W; Wei Q; Lin Z; Chen G Anal Chem; 2017 Aug; 89(16):8384-8390. PubMed ID: 28730807 [TBL] [Abstract][Full Text] [Related]
8. Sensitive Hyaluronidase Biosensor Based on Target-Responsive Hydrogel Using Electronic Balance as Readout. Li Z; Tang C; Huang D; Qin W; Luo F; Wang J; Guo L; Qiu B; Lin Z Anal Chem; 2019 Sep; 91(18):11821-11826. PubMed ID: 31436088 [TBL] [Abstract][Full Text] [Related]
9. A novel surface-enhanced Raman scattering-based ratiometric approach for detection of hyaluronidase in urine. Si Y; Li L; He B; Li J Talanta; 2020 Aug; 215():120915. PubMed ID: 32312457 [TBL] [Abstract][Full Text] [Related]
10. Reaction-complexation coupling between an enzyme and its polyelectrolytic substrate: determination of the dissociation constant of the hyaluronidase-hyaluronan complex from the hyaluronidase substrate-dependence. Lenormand H; Amar-Bacoup F; Vincent JC Biophys Chem; 2013; 175-176():63-70. PubMed ID: 23523464 [TBL] [Abstract][Full Text] [Related]
11. Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer. Nossier AI; Eissa S; Ismail MF; Hamdy MA; Azzazy HM Biosens Bioelectron; 2014 Apr; 54():7-14. PubMed ID: 24240162 [TBL] [Abstract][Full Text] [Related]
12. Ratiometric fluorescent response of electrospun fibrous strips for real-time sensing of alkaline phosphatase in serum. Zhao L; Xie S; Song X; Wei J; Zhang Z; Li X Biosens Bioelectron; 2017 May; 91():217-224. PubMed ID: 28011417 [TBL] [Abstract][Full Text] [Related]
13. One-pot synthesis of hyaluronic acid-coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity. Wang W; Li D; Zhang Y; Zhang W; Ma P; Wang X; Song D; Sun Y Mikrochim Acta; 2020 Oct; 187(11):604. PubMed ID: 33037925 [TBL] [Abstract][Full Text] [Related]
14. Rational design of a HA-AuNPs@AIED nanoassembly for activatable fluorescence detection of HAase and imaging in tumor cells. Wang S; Zhang CH; Zhang P; Chen S; Song ZL; Chen J; Zeng R Anal Methods; 2021 May; 13(17):2030-2036. PubMed ID: 33955975 [TBL] [Abstract][Full Text] [Related]
15. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Chib R; Mummert M; Bora I; Laursen BW; Shah S; Pendry R; Gryczynski I; Borejdo J; Gryczynski Z; Fudala R Anal Bioanal Chem; 2016 May; 408(14):3811-21. PubMed ID: 26993308 [TBL] [Abstract][Full Text] [Related]
16. Carbon Dot/Naphthalimide Based Ratiometric Fluorescence Biosensor for Hyaluronidase Detection. Raj P; Lee SY; Lee TY Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803381 [TBL] [Abstract][Full Text] [Related]
17. Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. Lokeshwar VB; Obek C; Pham HT; Wei D; Young MJ; Duncan RC; Soloway MS; Block NL J Urol; 2000 Jan; 163(1):348-56. PubMed ID: 10604388 [TBL] [Abstract][Full Text] [Related]
18. A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase. Ge M; Sun J; Chen M; Tian J; Yin H; Yin J Anal Bioanal Chem; 2020 Mar; 412(8):1915-1923. PubMed ID: 32030494 [TBL] [Abstract][Full Text] [Related]
19. pH effects on the hyaluronan hydrolysis catalysed by hyaluronidase in the presence of proteins: Part I. Dual aspect of the pH-dependence. Lenormand H; Deschrevel B; Vincent JC Matrix Biol; 2010 May; 29(4):330-7. PubMed ID: 20043995 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic interactions between hyaluronan and proteins at pH 4: how do they modulate hyaluronidase activity. Lenormand H; Deschrevel B; Tranchepain F; Vincent JC Biopolymers; 2008 Dec; 89(12):1088-103. PubMed ID: 18677769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]