These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25069018)

  • 61. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol.
    Tang S; Xu T; Peng J; Zhou K; Zhu Y; Zhou W; Cheng H; Zhou H
    J Sci Food Agric; 2020 May; 100(7):3013-3023. PubMed ID: 32056215
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption.
    Mehta D; Satyanarayana T
    Appl Microbiol Biotechnol; 2014 May; 98(10):4503-19. PubMed ID: 24413972
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Immobilisation of α-amylase on activated amidrazone acrylic fabric: a new approach for the enhancement of enzyme stability and reusability.
    Al-Najada AR; Almulaiky YQ; Aldhahri M; El-Shishtawy RM; Mohamed SA; Baeshen M; Al-Farga A; Abdulaal WH; Al-Harbi SA
    Sci Rep; 2019 Sep; 9(1):12672. PubMed ID: 31481731
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate.
    Okamoto S; Chin T; Nagata K; Takahashi T; Ohara H; Aso Y
    J Biosci Bioeng; 2015 May; 119(5):548-53. PubMed ID: 25468427
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis alpha-amylases and insights into engineering alpha-amylase variants active under acidic conditions.
    Lee S; Oneda H; Minoda M; Tanaka A; Inouye K
    J Biochem; 2006 Jun; 139(6):997-1005. PubMed ID: 16788050
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31.
    Kim DH; Morimoto N; Saburi W; Mukai A; Imoto K; Takehana T; Koike S; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(7):1378-83. PubMed ID: 22785486
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular analysis of Bacillus velezensis KB 2216, purification and biochemical characterization of alpha-amylase.
    Bhatt K; Lal S; Srinivasan R; Joshi B
    Int J Biol Macromol; 2020 Dec; 164():3332-3339. PubMed ID: 32871125
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution.
    Hwang KY; Song HK; Chang C; Lee J; Lee SY; Kim KK; Choe S; Sweet RM; Suh SW
    Mol Cells; 1997 Apr; 7(2):251-8. PubMed ID: 9163741
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Cloning of the gene encoding a thermostable alpha-amylase from bacillus licheniformis CICIM B0204 and functional identification of its promoter].
    Niu DD; Xu M; Ma JS; Wang ZX
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):576-80. PubMed ID: 17037058
    [TBL] [Abstract][Full Text] [Related]  

  • 72. C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase.
    Vihinen M; Peltonen T; Iitiä A; Suominen I; Mäntsälä P
    Protein Eng; 1994 Oct; 7(10):1255-9. PubMed ID: 7855141
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recombinant expression and characterization of an organic-solvent-tolerant α-amylase from Exiguobacterium sp. DAU5.
    Chang J; Lee YS; Fang SJ; Park IH; Choi YL
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1870-83. PubMed ID: 23344941
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of two amino acid residues' insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121.
    Li L; Yang J; Li J; Long L; Xiao Y; Tian X; Wang F; Zhang S
    Bioprocess Biosyst Eng; 2015 May; 38(5):871-9. PubMed ID: 25421163
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability.
    Li SF; Xu JY; Bao YJ; Zheng HC; Song H
    J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme.
    Mijts BN; Patel BKC
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2343-2349. PubMed ID: 12177328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification and functional characterization of an α-amylase with broad temperature and pH stability from Paenibacillus sp.
    Rajesh T; Kim YH; Choi YK; Jeon JM; Kim HJ; Park SH; Park HY; Choi KY; Kim H; Kim HJ; Lee SH; Yang YH
    Appl Biochem Biotechnol; 2013 May; 170(2):359-69. PubMed ID: 23526111
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient Expression of Maltohexaose-Forming
    Li Z; Su L; Duan X; Wu D; Wu J
    Biomed Res Int; 2017; 2017():5479762. PubMed ID: 29250543
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus.
    Agüloğlu Fincan S; Enez B; Özdemir S; Matpan Bekler F
    Carbohydr Polym; 2014 Feb; 102():144-50. PubMed ID: 24507266
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of a type I pullulanase from Anoxybacillus sp. SK3-4 reveals an unusual substrate hydrolysis.
    Kahar UM; Ng CL; Chan KG; Goh KM
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6291-6307. PubMed ID: 27000839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.