These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25069120)

  • 1. A 6 μW per channel analog biomimetic cochlear implant processor filterbank architecture with across channels AGC.
    Yang G; Lyon RF; Drakakis EM
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):72-86. PubMed ID: 25069120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra-low-power programmable analog bionic ear processor.
    Sarpeshkar R; Salthouse C; Sit JJ; Baker MW; Zhak SM; Lu TK; Turicchia L; Balster S
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):711-27. PubMed ID: 15825873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 0.45 V 100-channel neural-recording IC with sub- μW/channel consumption in 0.18 μm CMOS.
    Han D; Zheng Y; Rajkumar R; Dawe GS; Je M
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):735-46. PubMed ID: 24473539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable digital speech processor for cochlear implants using a TMS320C25.
    Dillier N; Senn C; Schlatter T; Stöckli M; Utzinger U
    Acta Otolaryngol Suppl; 1990; 469():120-7. PubMed ID: 2356719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture.
    Abdelhalim K; Smolyakov V; Genov R
    IEEE Trans Biomed Circuits Syst; 2011 Oct; 5(5):430-8. PubMed ID: 23852175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-power configurable neural recording system for epileptic seizure detection.
    Qian C; Shi J; Parramon J; Sánchez-Sinencio E
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):499-512. PubMed ID: 23893209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asynchronous Event-driven Encoder With Simultaneous Temporal Envelope and Phase Extraction for Cochlear Implants.
    Guo N; Wang S; Genov R; Wang L; Ho D
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):620-630. PubMed ID: 32324566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analog VLSI implementation of the inner hair cell and auditory nerve using a dual AGC model.
    Freedman DS; Cohen HI; Deligeorges S; Karl C; Hubbard AE
    IEEE Trans Biomed Circuits Syst; 2014 Apr; 8(2):240-56. PubMed ID: 24875284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.
    Yip M; Jin R; Nakajima HH; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2015 Jan; 50(1):214-229. PubMed ID: 26251552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multichannel Electrochemical Sensor Interface IC for Bioreactor Monitoring.
    Lin Q; Sijbers W; Avdikou C; Gomez D; Biswas D; Tacca B; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2023 Dec; 17(6):1227-1236. PubMed ID: 37708009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical resonator array for an implantable bionic ear.
    Bachman M; Zeng FG; Xu T; Li GP
    Audiol Neurootol; 2006; 11(2):95-103. PubMed ID: 16439832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converted and upgraded maps programmed in the newer speech processor for the first generation of multichannel cochlear implant.
    Magalhães AT; Goffi-Gomez MV; Hoshino AC; Tsuji RK; Bento RF; Brito R
    Otol Neurotol; 2013 Sep; 34(7):1193-200. PubMed ID: 23921918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases.
    Guo J; Ng W; Yuan J; Li S; Chan M
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):567-78. PubMed ID: 26529782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data compression in brain-machine/computer interfaces based on the Walsh-Hadamard transform.
    Hosseini-Nejad H; Jannesari A; Sodagar AM
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):129-37. PubMed ID: 24681926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-power programmable neural spike detection channel with embedded calibration and data compression.
    Rodriguez-Perez A; Ruiz-Amaya J; Delgado-Restituto M; Rodriguez-Vazquez Á
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):87-100. PubMed ID: 23852974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a semi-implantable hearing device for direct acoustic cochlear stimulation.
    Bernhard H; Stieger C; Perriard Y
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):420-8. PubMed ID: 20959263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Digital Speech Processor for Cochlear Implants Using a TMS320C25.
    Dillier N; Senn C; Schlatter T; Stöckli M; Utzinger U
    Acta Otolaryngol; 1990; 109(sup469):120-127. PubMed ID: 31905530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-power 32-channel digitally programmable neural recording integrated circuit.
    Wattanapanitch W; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):592-602. PubMed ID: 23852555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination of synthetic vowels by using tactile vocoder and a comparison to that of an eight-channel cochlear implant.
    Ifukube T
    IEEE Trans Biomed Eng; 1989 Nov; 36(11):1085-91. PubMed ID: 2530151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.