BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25070038)

  • 1. Quantum study of boron nitride nanotubes functionalized with anticancer molecules.
    Duverger E; Gharbi T; Delabrousse E; Picaud F
    Phys Chem Chem Phys; 2014 Sep; 16(34):18425-32. PubMed ID: 25070038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
    Khatti Z; Hashemianzadeh SM
    Eur J Pharm Sci; 2016 Jun; 88():291-7. PubMed ID: 27084121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.
    Mukhopadhyay S; Gowtham S; Scheicher RH; Pandey R; Karna SP
    Nanotechnology; 2010 Apr; 21(16):165703. PubMed ID: 20351402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles.
    Mortazavifar A; Raissi H; Shahabi M
    J Biomol Struct Dyn; 2019 Nov; 37(18):4852-4862. PubMed ID: 30721644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.
    Zhang YQ; Liu YJ; Liu YL; Zhao JX
    J Mol Graph Model; 2014 Jun; 51():1-6. PubMed ID: 24837498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water phase transition induced by a Stone-Wales defect in a boron nitride nanotube.
    Won CY; Aluru NR
    J Am Chem Soc; 2008 Oct; 130(41):13649-52. PubMed ID: 18803384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.
    Zhao JX; Ding YH
    Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes.
    Chigo Anota E; Cocoletzi GH
    J Mol Model; 2013 Jun; 19(6):2335-41. PubMed ID: 23397070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-mediated assembly of boron nitride nanotubes.
    Zhi C; Bando Y; Wang W; Tang C; Kuwahara H; Golberg D
    Chem Asian J; 2007 Dec; 2(12):1581-5. PubMed ID: 18041790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible pressure-induced transformation of boron nitride nanotubes.
    Saha S; Gadagkar V; Maiti PK; Muthu DV; Golberg D; Tang C; Zhi C; Bando Y; Sood AK
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1810-4. PubMed ID: 17654945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube.
    El Khalifi M; Bentin J; Duverger E; Gharbi T; Boulahdour H; Picaud F
    Phys Chem Chem Phys; 2016 Sep; 18(36):24994-25001. PubMed ID: 27711377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures.
    Kraszewski S; Duverger E; Ramseyer C; Picaud F
    J Chem Phys; 2013 Nov; 139(17):174704. PubMed ID: 24206319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs.
    Li X; Zhi C; Hanagata N; Yamaguchi M; Bando Y; Golberg D
    Chem Commun (Camb); 2013 Aug; 49(66):7337-9. PubMed ID: 23851619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the adsorption of pentachlorophenol on the pristine and Fe-doped boron nitride nanotubes.
    Wang RX; Zhang DJ; Zhu RX; Liu CB
    J Mol Model; 2014 Feb; 20(2):2093. PubMed ID: 24504454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.
    Roosta S; Hashemianzadeh SM; Ketabi S
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():98-103. PubMed ID: 27287103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of proteins on boron nitride nanotubes.
    Zhi C; Bando Y; Tang C; Golberg D
    J Am Chem Soc; 2005 Dec; 127(49):17144-5. PubMed ID: 16332036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive analysis of the CVD growth of boron nitride nanotubes.
    Pakdel A; Zhi C; Bando Y; Nakayama T; Golberg D
    Nanotechnology; 2012 Jun; 23(21):215601. PubMed ID: 22551670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent functionalization of boron nitride nanotubes with poly(p-phenylene-ethynylene)s and polythiophene.
    Velayudham S; Lee CH; Xie M; Blair D; Bauman N; Yap YK; Green SA; Liu H
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):104-10. PubMed ID: 20356226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution.
    Gao Z; Zhi C; Bando Y; Golberg D; Serizawa T
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):627-32. PubMed ID: 21355547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density Functional Theory Study of Antioxidant Adsorption onto Single-Wall Boron Nitride Nanotubes: Design of New Antioxidant Delivery Systems.
    Ghazanfary S; Oroojalian F; Yazdian-Robati R; Dadmehr M; Sahebkar A
    Comb Chem High Throughput Screen; 2019; 22(7):470-482. PubMed ID: 31566131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.