These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 25070260)

  • 1. Inputs for subject-specific computational fluid dynamics simulation of blood flow in the mouse aorta.
    Van Doormaal M; Zhou YQ; Zhang X; Steinman DA; Henkelman RM
    J Biomech Eng; 2014 Oct; 136(10):101008. PubMed ID: 25070260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis.
    Hoi Y; Zhou YQ; Zhang X; Henkelman RM; Steinman DA
    Ann Biomed Eng; 2011 May; 39(5):1414-22. PubMed ID: 21279441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data.
    Trachet B; Bols J; De Santis G; Vandenberghe S; Loeys B; Segers P
    J Biomech Eng; 2011 Dec; 133(12):121006. PubMed ID: 22206423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of computational fluid dynamics in hemodynamic research of aortic arch].
    Zhang T; Xiong J; Hu XZ; Jia X; Luan SL; Guo W
    Zhonghua Yi Xue Za Zhi; 2013 Jan; 93(5):380-4. PubMed ID: 23660214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.
    Canstein C; Cachot P; Faust A; Stalder AF; Bock J; Frydrychowicz A; Küffer J; Hennig J; Markl M
    Magn Reson Med; 2008 Mar; 59(3):535-46. PubMed ID: 18306406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamics in a three-dimensional printed aortic model: a comparison of four-dimensional phase-contrast magnetic resonance and image-based computational fluid dynamics.
    Park J; Kim J; Hyun S; Lee J
    MAGMA; 2022 Oct; 35(5):719-732. PubMed ID: 35133539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust construction algorithm of the centerline skeleton for complex aortic vascular structure using computational fluid dynamics.
    Touati J; Bologna M; Schwein A; Migliavacca F; Garbey M
    Comput Biol Med; 2017 Jul; 86():6-17. PubMed ID: 28494383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta.
    Morbiducci U; Ponzini R; Gallo D; Bignardi C; Rizzo G
    J Biomech; 2013 Jan; 46(1):102-9. PubMed ID: 23159094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
    Rispoli VC; Nielsen JF; Nayak KS; Carvalho JL
    Biomed Eng Online; 2015 Nov; 14():110. PubMed ID: 26611470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images.
    Karmonik C; Partovi S; Schmack B; Weymann A; Loebe M; Noon GP; Piontek P; Karck M; Lumsden AB; Ruhparwar A
    Artif Organs; 2014 Feb; 38(2):142-8. PubMed ID: 23889366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward translating near-infrared spectroscopy oxygen saturation data for the non-invasive prediction of spatial and temporal hemodynamics during exercise.
    Ellwein L; Samyn MM; Danduran M; Schindler-Ivens S; Liebham S; LaDisa JF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):75-96. PubMed ID: 27376865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subject-specific aortic wall shear stress estimations using semi-automatic segmentation.
    Renner J; Nadali Najafabadi H; Modin D; Länne T; Karlsson M
    Clin Physiol Funct Imaging; 2012 Nov; 32(6):481-91. PubMed ID: 23031070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of pulsatile flowfield in healthy thoracic aorta models.
    Wen CY; Yang AS; Tseng LY; Chai JW
    Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow.
    Gallo D; De Santis G; Negri F; Tresoldi D; Ponzini R; Massai D; Deriu MA; Segers P; Verhegghe B; Rizzo G; Morbiducci U
    Ann Biomed Eng; 2012 Mar; 40(3):729-41. PubMed ID: 22009313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.
    Gallo D; Gülan U; Di Stefano A; Ponzini R; Lüthi B; Holzner M; Morbiducci U
    J Biomech; 2014 Sep; 47(12):3149-55. PubMed ID: 25017300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta.
    Bozzi S; Morbiducci U; Gallo D; Ponzini R; Rizzo G; Bignardi C; Passoni G
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1104-1112. PubMed ID: 28553722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the dominant arch by computational fluid dynamics analysis using computed tomography images in double aortic arch.
    Hohri Y; Numata S; Itatani K; Inoue T; Yaku H
    Int J Cardiovasc Imaging; 2021 Aug; 37(8):2573-2575. PubMed ID: 33772691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics.
    Stokes C; Bonfanti M; Li Z; Xiong J; Chen D; Balabani S; Díaz-Zuccarini V
    J Biomech; 2021 Dec; 129():110793. PubMed ID: 34715606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.