These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25070326)

  • 1. Synthesis of aliphatic polyester hydrogel for cardiac tissue engineering.
    Dhingra S; Weisel RD; Li RK
    Methods Mol Biol; 2014; 1181():51-9. PubMed ID: 25070326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial.
    Mironi-Harpaz I; Berdichevski A; Seliktar D
    Methods Mol Biol; 2014; 1181():61-8. PubMed ID: 25070327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel based injectable scaffolds for cardiac tissue regeneration.
    Radhakrishnan J; Krishnan UM; Sethuraman S
    Biotechnol Adv; 2014; 32(2):449-61. PubMed ID: 24406815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.
    Singh NK; Lee DS
    J Control Release; 2014 Nov; 193():214-27. PubMed ID: 24815421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels.
    Moeinzadeh S; Barati D; He X; Jabbari E
    Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability.
    Thankam FG; Muthu J
    J Mech Behav Biomed Mater; 2014 Jul; 35():111-22. PubMed ID: 24762858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial regeneration: Roles of stem cells and hydrogels.
    Ye Z; Zhou Y; Cai H; Tan W
    Adv Drug Deliv Rev; 2011 Jul; 63(8):688-97. PubMed ID: 21371512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation.
    Wu DQ; Wang T; Lu B; Xu XD; Cheng SX; Jiang XJ; Zhang XZ; Zhuo RX
    Langmuir; 2008 Sep; 24(18):10306-12. PubMed ID: 18680318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold.
    Miyagi Y; Zeng F; Huang XP; Foltz WD; Wu J; Mihic A; Yau TM; Weisel RD; Li RK
    Biomaterials; 2010 Oct; 31(30):7684-94. PubMed ID: 20659765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.
    Peng S; Yang SR; Ko CY; Peng YS; Chu IM
    J Biomed Mater Res A; 2013 Nov; 101(11):3311-9. PubMed ID: 24039062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel based approaches for cardiac tissue engineering.
    Saludas L; Pascual-Gil S; Prósper F; Garbayo E; Blanco-Prieto M
    Int J Pharm; 2017 May; 523(2):454-475. PubMed ID: 27989830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.
    Fu S; Guo G; Gong C; Zeng S; Liang H; Luo F; Zhang X; Zhao X; Wei Y; Qian Z
    J Phys Chem B; 2009 Dec; 113(52):16518-25. PubMed ID: 19947637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.
    Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.
    Leeuwenburgh SC; Jansen JA; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model.
    Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH
    Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.