These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 25070422)
1. Further evaluation of the tropane analogs of haloperidol. Sampson D; Bricker B; Zhu XY; Peprah K; Lamango NS; Setola V; Roth BL; Ablordeppey SY Bioorg Med Chem Lett; 2014 Sep; 24(17):4294-7. PubMed ID: 25070422 [TBL] [Abstract][Full Text] [Related]
2. The acute EPS of haloperidol may be unrelated to its metabolic transformation to BCPP+. Sikazwe DM; Li S; Lyles-Eggleston M; Ablordeppey SY Bioorg Med Chem Lett; 2003 Nov; 13(21):3779-82. PubMed ID: 14552778 [TBL] [Abstract][Full Text] [Related]
4. A study of the structure-affinity relationship in SYA16263; is a D Onyameh EK; Bricker BA; Eyunni SVK; Voshavar C; Gonela UM; Ofori E; Jenkins A; Ablordeppey SY Bioorg Med Chem; 2021 Jan; 30():115943. PubMed ID: 33338898 [TBL] [Abstract][Full Text] [Related]
5. Dopamine receptor binding of 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)- 4-oxobutyl]-1,2,3,6-tetrahydropyridine (HPTP), an intermediate metabolite of haloperidol. Brand L; Oliver DW; van der Schyf CJ; Pond SM; Castagnoli N Life Sci; 1996; 59(10):815-20. PubMed ID: 8761315 [TBL] [Abstract][Full Text] [Related]
6. Mirtazapine enhances the effect of haloperidol on apomorphine-induced climbing behaviour in mice and attenuates haloperidol-induced catalepsy in rats. Berendsen HH; Broekkamp CL; Pinder RM Psychopharmacology (Berl); 1998 Feb; 135(3):284-9. PubMed ID: 9498732 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis, and evaluation of metabolism-based analogues of haloperidol incapable of forming MPP+-like species. Lyles-Eggleston M; Altundas R; Xia J; Sikazwe DM; Fan P; Yang Q; Li S; Zhang W; Zhu X; Schmidt AW; Vanase-Frawley M; Shrihkande A; Villalobos A; Borne RF; Ablordeppey SY J Med Chem; 2004 Jan; 47(3):497-508. PubMed ID: 14736232 [TBL] [Abstract][Full Text] [Related]
8. Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-Ht4 or 5-Ht6 receptors following antipsychotic administration. Ward RP; Dorsa DM Neuroscience; 1999 Mar; 89(3):927-38. PubMed ID: 10199625 [TBL] [Abstract][Full Text] [Related]
9. Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Natesan S; Reckless GE; Nobrega JN; Fletcher PJ; Kapur S Neuropsychopharmacology; 2006 Sep; 31(9):1854-63. PubMed ID: 16319908 [TBL] [Abstract][Full Text] [Related]
10. Identification of a butyrophenone analog as a potential atypical antipsychotic agent: 4-[4-(4-chlorophenyl)-1,4-diazepan-1-yl]-1-(4-fluorophenyl)butan-1-one. Ablordeppey SY; Altundas R; Bricker B; Zhu XY; Kumar EV; Jackson T; Khan A; Roth BL Bioorg Med Chem; 2008 Aug; 16(15):7291-301. PubMed ID: 18595716 [TBL] [Abstract][Full Text] [Related]
11. Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Cosi C; Carilla-Durand E; Assié MB; Ormiere AM; Maraval M; Leduc N; Newman-Tancredi A Eur J Pharmacol; 2006 Mar; 535(1-3):135-44. PubMed ID: 16554049 [TBL] [Abstract][Full Text] [Related]
12. Modification of cataleptic responses to dopamine receptor antagonists after withdrawal from chronic cocaine or cocaine plus dopamine antagonist administration. Ushijima I; Mizuki Y; Suetsugi M; Akimoto T; Yamada M Prog Neuropsychopharmacol Biol Psychiatry; 1998 May; 22(4):709-21. PubMed ID: 9682282 [TBL] [Abstract][Full Text] [Related]
14. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor. Schwalbe T; Kaindl J; Hübner H; Gmeiner P Bioorg Med Chem; 2017 Oct; 25(19):5084-5094. PubMed ID: 28666858 [TBL] [Abstract][Full Text] [Related]
15. Prefrontal cortical and hippocampal modulation of haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Lipska BK; Jaskiw GE; Braun AR; Weinberger DR Biol Psychiatry; 1995 Aug; 38(4):255-62. PubMed ID: 8547448 [TBL] [Abstract][Full Text] [Related]
16. Pharmacology of JNJ-37822681, a specific and fast-dissociating D2 antagonist for the treatment of schizophrenia. Langlois X; Megens A; Lavreysen H; Atack J; Cik M; te Riele P; Peeters L; Wouters R; Vermeire J; Hendrickx H; Macdonald G; De Bruyn M J Pharmacol Exp Ther; 2012 Jul; 342(1):91-105. PubMed ID: 22490380 [TBL] [Abstract][Full Text] [Related]
17. An animal model of extrapyramidal side effects induced by antipsychotic drugs: relationship with D2 dopamine receptor occupancy. Crocker AD; Hemsley KM Prog Neuropsychopharmacol Biol Psychiatry; 2001 Apr; 25(3):573-90. PubMed ID: 11370998 [TBL] [Abstract][Full Text] [Related]
18. Atypical antipsychotic properties of blonanserin, a novel dopamine D2 and 5-HT2A antagonist. Ohno Y; Okano M; Imaki J; Tatara A; Okumura T; Shimizu S Pharmacol Biochem Behav; 2010 Aug; 96(2):175-80. PubMed ID: 20460137 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and atypical antipsychotic profile of some 2-(2-piperidinoethyl)benzocycloalkanones as analogues of butyrophenone. Fontenla JA; Osuna J; Rosa E; Castro ME; G-Ferreiro T; Loza-García I; Calleja JM; Sanz F; Rodríguez J; Raviña E J Med Chem; 1994 Aug; 37(16):2564-73. PubMed ID: 7914540 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological actions of a novel and selective dopamine D3 receptor antagonist, KCH-1110. Park WK; Jeong D; Yun CW; Lee S; Cho H; Kim GD; Koh HY; Pae AN; Cho YS; Choi KI; Jung JY; Jung SH; Kong JY Pharmacol Res; 2003 Dec; 48(6):615-22. PubMed ID: 14527827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]