These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25070461)

  • 21. Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis.
    Fan SK; Hsu YW; Chen CH
    Lab Chip; 2011 Aug; 11(15):2500-8. PubMed ID: 21666906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.
    Gu SQ; Zhang YX; Zhu Y; Du WB; Yao B; Fang Q
    Anal Chem; 2011 Oct; 83(19):7570-6. PubMed ID: 21866917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Throughput Generation of Durable Droplet Arrays for Single-Cell Encapsulation, Culture, and Monitoring.
    Wu H; Chen X; Gao X; Zhang M; Wu J; Wen W
    Anal Chem; 2018 Apr; 90(7):4303-4309. PubMed ID: 29569893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Centrifugal micro-channel array droplet generation for highly parallel digital PCR.
    Chen Z; Liao P; Zhang F; Jiang M; Zhu Y; Huang Y
    Lab Chip; 2017 Jan; 17(2):235-240. PubMed ID: 28009866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplexed inkjet functionalization of silicon photonic biosensors.
    Kirk JT; Fridley GE; Chamberlain JW; Christensen ED; Hochberg M; Ratner DM
    Lab Chip; 2011 Apr; 11(7):1372-7. PubMed ID: 21327248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.
    Hatch AC; Fisher JS; Tovar AR; Hsieh AT; Lin R; Pentoney SL; Yang DL; Lee AP
    Lab Chip; 2011 Nov; 11(22):3838-45. PubMed ID: 21959960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell patterning through inkjet printing of one cell per droplet.
    Yamaguchi S; Ueno A; Akiyama Y; Morishima K
    Biofabrication; 2012 Dec; 4(4):045005. PubMed ID: 23075800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples.
    Zhang K; Liang Q; Ai X; Hu P; Wang Y; Luo G
    Anal Chem; 2011 Oct; 83(20):8029-34. PubMed ID: 21853976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of arrays of polymer gradients using inkjet printing.
    Hansen A; Zhang R; Bradley M
    Macromol Rapid Commun; 2012 Jul; 33(13):1114-8. PubMed ID: 22528882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inkjet-like printing of single-cells.
    Yusof A; Keegan H; Spillane CD; Sheils OM; Martin CM; O'Leary JJ; Zengerle R; Koltay P
    Lab Chip; 2011 Jul; 11(14):2447-54. PubMed ID: 21655638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.
    Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds.
    King PH; Jones G; Morgan H; de Planque MR; Zauner KP
    Lab Chip; 2014 Feb; 14(4):722-9. PubMed ID: 24336841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes.
    Arrabito G; Galati C; Castellano S; Pignataro B
    Lab Chip; 2013 Jan; 13(1):68-72. PubMed ID: 23132304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Capillary-based integrated digital PCR in picoliter droplets.
    Chen J; Luo Z; Li L; He J; Li L; Zhu J; Wu P; He L
    Lab Chip; 2018 Jan; 18(3):412-421. PubMed ID: 29303179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition.
    Talbot EL; Yang L; Berson A; Bain CD
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9572-83. PubMed ID: 24889140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Printing multistrain bacterial patterns with a piezoelectric inkjet printer.
    Merrin J; Leibler S; Chuang JS
    PLoS One; 2007 Jul; 2(7):e663. PubMed ID: 17653283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing.
    Teo MY; Kee S; RaviChandran N; Stuart L; Aw KC; Stringer J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1832-1839. PubMed ID: 31820627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.
    Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A
    J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR.
    He Y; Yin J; Wu W; Liang H; Zhu F; Mu Y; Fan H; Zhang T
    Anal Chem; 2020 Jun; 92(12):8530-8535. PubMed ID: 32412739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inkjet-printed thiol self-assembled monolayer structures on gold: quality control and microarray electrode fabrication.
    Rianasari I; Walder L; Burchardt M; Zawisza I; Wittstock G
    Langmuir; 2008 Aug; 24(16):9110-7. PubMed ID: 18616305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.