These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Hatch AC; Fisher JS; Tovar AR; Hsieh AT; Lin R; Pentoney SL; Yang DL; Lee AP Lab Chip; 2011 Nov; 11(22):3838-45. PubMed ID: 21959960 [TBL] [Abstract][Full Text] [Related]
27. Cell patterning through inkjet printing of one cell per droplet. Yamaguchi S; Ueno A; Akiyama Y; Morishima K Biofabrication; 2012 Dec; 4(4):045005. PubMed ID: 23075800 [TBL] [Abstract][Full Text] [Related]
28. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Zhang K; Liang Q; Ai X; Hu P; Wang Y; Luo G Anal Chem; 2011 Oct; 83(20):8029-34. PubMed ID: 21853976 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of arrays of polymer gradients using inkjet printing. Hansen A; Zhang R; Bradley M Macromol Rapid Commun; 2012 Jul; 33(13):1114-8. PubMed ID: 22528882 [TBL] [Abstract][Full Text] [Related]
31. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972 [TBL] [Abstract][Full Text] [Related]
32. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. King PH; Jones G; Morgan H; de Planque MR; Zauner KP Lab Chip; 2014 Feb; 14(4):722-9. PubMed ID: 24336841 [TBL] [Abstract][Full Text] [Related]
33. Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes. Arrabito G; Galati C; Castellano S; Pignataro B Lab Chip; 2013 Jan; 13(1):68-72. PubMed ID: 23132304 [TBL] [Abstract][Full Text] [Related]
34. Capillary-based integrated digital PCR in picoliter droplets. Chen J; Luo Z; Li L; He J; Li L; Zhu J; Wu P; He L Lab Chip; 2018 Jan; 18(3):412-421. PubMed ID: 29303179 [TBL] [Abstract][Full Text] [Related]
35. Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition. Talbot EL; Yang L; Berson A; Bain CD ACS Appl Mater Interfaces; 2014 Jun; 6(12):9572-83. PubMed ID: 24889140 [TBL] [Abstract][Full Text] [Related]
37. Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing. Teo MY; Kee S; RaviChandran N; Stuart L; Aw KC; Stringer J ACS Appl Mater Interfaces; 2020 Jan; 12(1):1832-1839. PubMed ID: 31820627 [TBL] [Abstract][Full Text] [Related]
38. Substrate stiffness influences high resolution printing of living cells with an ink-jet system. Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548 [TBL] [Abstract][Full Text] [Related]
39. Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR. He Y; Yin J; Wu W; Liang H; Zhu F; Mu Y; Fan H; Zhang T Anal Chem; 2020 Jun; 92(12):8530-8535. PubMed ID: 32412739 [TBL] [Abstract][Full Text] [Related]
40. Inkjet-printed thiol self-assembled monolayer structures on gold: quality control and microarray electrode fabrication. Rianasari I; Walder L; Burchardt M; Zawisza I; Wittstock G Langmuir; 2008 Aug; 24(16):9110-7. PubMed ID: 18616305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]