These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25071237)

  • 1. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.
    Harrigan JJ; Ahonsi B; Palamidi E; Reid SR
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130201. PubMed ID: 25071237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic shock wave in ballistic gelatin behind soft body armor.
    Liu L; Fan Y; Li W
    J Mech Behav Biomed Mater; 2014 Jun; 34():199-207. PubMed ID: 24607758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.
    Prabhu R; Whittington WR; Patnaik SS; Mao Y; Begonia MT; Williams LN; Liao J; Horstemeyer MF
    J Vis Exp; 2015 May; (99):e51545. PubMed ID: 26067742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector.
    Fu H; Tang XR; Li JL; Tan DW
    Rev Sci Instrum; 2014 Apr; 85(4):045120. PubMed ID: 24784672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids.
    Dai F; Xia K; Luo SN
    Rev Sci Instrum; 2008 Dec; 79(12):123903. PubMed ID: 19123575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Design of SHPB to Characterize Brittle Materials Under Compression for High Strain Rates.
    Jankowiak T; Rusinek A; Voyiadjis GZ
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the split Hopkinson pressure bar to validate material models.
    Church P; Cornish R; Cullis I; Gould P; Lewtas I
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130294. PubMed ID: 25071238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and Theoretical Analysis of the Inertia Effects and Interfacial Friction in SHPB Test Systems.
    Pei P; Pei Z; Tang Z
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates.
    Prabhu R; Horstemeyer MF; Tucker MT; Marin EB; Bouvard JL; Sherburn JA; Liao J; Williams LN
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1067-80. PubMed ID: 21783116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
    Trexler MM; Lennon AM; Wickwire AC; Harrigan TP; Luong QT; Graham JL; Maisano AJ; Roberts JC; Merkle AC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1920-8. PubMed ID: 22098890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures.
    Bendarma A; Jankowiak T; Rusinek A; Lodygowski T; Jia B; Miguélez MH; Klosak M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
    Lang L; Song KI; Zhai Y; Lao D; Lee HL
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars.
    Lea LJ; Jardine AP
    Rev Sci Instrum; 2016 Feb; 87(2):023101. PubMed ID: 26931828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch.
    Huang W; Chen G; Hu M; Liang Q; Yang K; Zhang M
    Rev Sci Instrum; 2019 Feb; 90(2):025110. PubMed ID: 30831773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples.
    Nakagawa S
    Rev Sci Instrum; 2011 Apr; 82(4):044901. PubMed ID: 21529029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Young's Modulus Calculus Using Split Hopkinson Bar Tests on Long and Thin Material Samples.
    Rotariu AN; Trană E; Matache L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application.
    Pang S; Tao W; Liang Y; Huan S; Liu Y; Chen J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On dynamic behavior of bone: Experimental and numerical study of porcine ribs subjected to impact loads in dynamic three-point bending tests.
    Ayagara AR; Langlet A; Hambli R
    J Mech Behav Biomed Mater; 2019 Oct; 98():336-347. PubMed ID: 31302583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Specimen Thickness on the Acquisition of Al6061-T6 Material Properties Using SHPB and Verified by FEM.
    Kim YB; Kim J
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A technique for combined dynamic compression-shear test.
    Zhao PD; Lu FY; Chen R; Lin YL; Li JL; Lu L; Sun GL
    Rev Sci Instrum; 2011 Mar; 82(3):035110. PubMed ID: 21456792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.