These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25071453)

  • 21. Activation of dopamine D1 receptors enhances the temporal summation and excitability of rat retinal ganglion cells.
    Cui P; Li XY; Zhao Y; Li Q; Gao F; Li LZ; Yin N; Sun XH; Wang Z
    Neuroscience; 2017 Jul; 355():71-83. PubMed ID: 28499973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First spike latency of ON/OFF neurons in the optic tectum of pigeons.
    Wang S; Wang M; Wang Z; Shi L
    Integr Zool; 2019 Sep; 14(5):479-493. PubMed ID: 30585417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina.
    Vuong HE; Hardi CN; Barnes S; Brecha NC
    J Neurosci; 2015 Dec; 35(48):15955-70. PubMed ID: 26631476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopaminergic modulation of ganglion-cell photoreceptors in rat.
    Van Hook MJ; Wong KY; Berson DM
    Eur J Neurosci; 2012 Feb; 35(4):507-18. PubMed ID: 22304466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells.
    Cantrell DR; Cang J; Troy JB; Liu X
    PLoS Comput Biol; 2010 Oct; 6(10):e1000967. PubMed ID: 20975932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Dopamine D2-Like Receptor Antagonists on Light Responses of Ganglion Cells in Wild-Type and P23H Rat Retinas.
    Jensen R
    PLoS One; 2015; 10(12):e0146154. PubMed ID: 26717015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells.
    Pan F; Toychiev A; Zhang Y; Atlasz T; Ramakrishnan H; Roy K; Völgyi B; Akopian A; Bloomfield SA
    J Physiol; 2016 Nov; 594(22):6679-6699. PubMed ID: 27350405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional circuitry of the retinal ganglion cell's nonlinear receptive field.
    Demb JB; Haarsma L; Freed MA; Sterling P
    J Neurosci; 1999 Nov; 19(22):9756-67. PubMed ID: 10559385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response Latency Tuning by Retinal Circuits Modulates Signal Efficiency.
    Tengölics ÁJ; Szarka G; Ganczer A; Szabó-Meleg E; Nyitrai M; Kovács-Öller T; Völgyi B
    Sci Rep; 2019 Oct; 9(1):15110. PubMed ID: 31641196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-frequency, low-intensity ultrasound modulates light responsiveness of mouse retinal ganglion cells.
    Zhuo SY; Li GF; Gong HQ; Qiu WB; Zheng HR; Liang PJ
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35772385
    [No Abstract]   [Full Text] [Related]  

  • 31. Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy.
    Tokutake Y; Freed MA
    Eur J Neurosci; 2008 Sep; 28(5):914-23. PubMed ID: 18691326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fidelity of the ensemble code for visual motion in primate retina.
    Frechette ES; Sher A; Grivich MI; Petrusca D; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2005 Jul; 94(1):119-35. PubMed ID: 15625091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High glucose levels impact visual response properties of retinal ganglion cells in C57 mice-An in vitro physiological study.
    Zhou Y; Xiao C; Pu M
    Sci China Life Sci; 2017 Dec; 60(12):1428-1435. PubMed ID: 29288426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.
    Ho E; Smith R; Goetz G; Lei X; Galambos L; Kamins TI; Harris J; Mathieson K; Palanker D; Sher A
    J Neurophysiol; 2018 Feb; 119(2):389-400. PubMed ID: 29046428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Action of iontophoretically applied dopamine on cat retinal ganglion cells.
    Thier P; Alder V
    Brain Res; 1984 Jan; 292(1):109-21. PubMed ID: 6697199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina.
    Tian N; Copenhagen DR
    Neuron; 2003 Jul; 39(1):85-96. PubMed ID: 12848934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A retinal ganglion cell that can signal irradiance continuously for 10 hours.
    Wong KY
    J Neurosci; 2012 Aug; 32(33):11478-85. PubMed ID: 22895730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina.
    Crook JD; Davenport CM; Peterson BB; Packer OS; Detwiler PB; Dacey DM
    J Neurosci; 2009 Jul; 29(26):8372-87. PubMed ID: 19571128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus.
    Ellis EM; Gauvain G; Sivyer B; Murphy GJ
    J Neurophysiol; 2016 Aug; 116(2):602-10. PubMed ID: 27169509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Brain Res; 2010 Aug; 1348():71-83. PubMed ID: 20599822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.