These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25071484)

  • 1. Functional correlates of optic flow motion processing in Parkinson's disease.
    Putcha D; Ross RS; Rosen ML; Norton DJ; Cronin-Golomb A; Somers DC; Stern CE
    Front Integr Neurosci; 2014; 8():57. PubMed ID: 25071484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic-flow selective cortical sensory regions associated with self-reported states of vection.
    Uesaki M; Ashida H
    Front Psychol; 2015; 6():775. PubMed ID: 26106350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common neural substrate for processing scenes and egomotion-compatible visual motion.
    Sulpizio V; Galati G; Fattori P; Galletti C; Pitzalis S
    Brain Struct Funct; 2020 Sep; 225(7):2091-2110. PubMed ID: 32647918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optic flow selectivity in the macaque parieto-occipital sulcus.
    Pitzalis S; Hadj-Bouziane F; Dal Bò G; Guedj C; Strappini F; Meunier M; Farnè A; Fattori P; Galletti C
    Brain Struct Funct; 2021 Dec; 226(9):2911-2930. PubMed ID: 34043075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestibular and visual brain areas in the medial cortex of the human brain.
    Beer AL; Becker M; Frank SM; Greenlee MW
    J Neurophysiol; 2023 Apr; 129(4):948-962. PubMed ID: 36988202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Egomotion-related visual areas respond to active leg movements.
    Serra C; Galletti C; Di Marco S; Fattori P; Galati G; Sulpizio V; Pitzalis S
    Hum Brain Mapp; 2019 Aug; 40(11):3174-3191. PubMed ID: 30924264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual self-motion cues are impaired yet overweighted during visual-vestibular integration in Parkinson's disease.
    Yakubovich S; Israeli-Korn S; Halperin O; Yahalom G; Hassin-Baer S; Zaidel A
    Brain Commun; 2020; 2(1):fcaa035. PubMed ID: 32954293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation.
    Wada A; Sakano Y; Ando H
    Front Psychol; 2016; 7():309. PubMed ID: 26973588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural substrates underlying the passive observation and active control of translational egomotion.
    Huang RS; Chen CF; Sereno MI
    J Neurosci; 2015 Mar; 35(10):4258-67. PubMed ID: 25762672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas.
    Di Marco S; Fattori P; Galati G; Galletti C; Lappe M; Maltempo T; Serra C; Sulpizio V; Pitzalis S
    Cortex; 2021 Apr; 137():74-92. PubMed ID: 33607346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of optic flow perception and egocentric coordinates on veering in Parkinson's disease.
    Davidsdottir S; Wagenaar R; Young D; Cronin-Golomb A
    Brain; 2008 Nov; 131(Pt 11):2882-93. PubMed ID: 18957454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antero-Posterior vs. Lateral Vestibular Input Processing in Human Visual Cortex.
    Aedo-Jury F; Cottereau BR; Celebrini S; Séverac Cauquil A
    Front Integr Neurosci; 2020; 14():43. PubMed ID: 32848650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation.
    Cardin V; Smith AT
    Cereb Cortex; 2010 Aug; 20(8):1964-73. PubMed ID: 20034998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular inputs to human motion-sensitive visual cortex.
    Smith AT; Wall MB; Thilo KV
    Cereb Cortex; 2012 May; 22(5):1068-77. PubMed ID: 21743097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity to translational egomotion in human brain motion areas.
    Pitzalis S; Sdoia S; Bultrini A; Committeri G; Di Russo F; Fattori P; Galletti C; Galati G
    PLoS One; 2013; 8(4):e60241. PubMed ID: 23577096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex.
    Cottereau BR; Smith AT; Rima S; Fize D; Héjja-Brichard Y; Renaud L; Lejards C; Vayssière N; Trotter Y; Durand JB
    Cereb Cortex; 2017 Jan; 27(1):330-343. PubMed ID: 28108489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does visuospatial motion perception correlate with coexisting movement disorders in Parkinson's disease?
    Beylergil SB; Gupta P; ElKasaby M; Kilbane C; Shaikh AG
    J Neurol; 2022 Apr; 269(4):2179-2192. PubMed ID: 34554323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential processing of the direction and focus of expansion of optic flow stimuli in areas MST and V3A of the human visual cortex.
    Strong SL; Silson EH; Gouws AD; Morland AB; McKeefry DJ
    J Neurophysiol; 2017 Jun; 117(6):2209-2217. PubMed ID: 28298300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.
    Field DT; Inman LA; Li L
    Cortex; 2015 Oct; 71():377-89. PubMed ID: 26318342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion.
    Cardin V; Smith AT
    J Neurophysiol; 2011 Sep; 106(3):1240-9. PubMed ID: 21653717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.