These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25071813)

  • 1. The role of branch architecture in assimilate production and partitioning: the example of apple (Malus domestica).
    Fanwoua J; Bairam E; Delaire M; Buck-Sorlin G
    Front Plant Sci; 2014; 5():338. PubMed ID: 25071813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models.
    Pallas B; Da Silva D; Valsesia P; Yang W; Guillaume O; Lauri PE; Vercambre G; Génard M; Costes E
    Ann Bot; 2016 Aug; 118(2):317-30. PubMed ID: 27279576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal management of non-structural carbohydrate resources in apple leaves and branch wood under a broad range of sink and source manipulations.
    Naschitz S; Naor A; Genish S; Wolf S; Goldschmidt EE
    Tree Physiol; 2010 Jun; 30(6):715-27. PubMed ID: 20460388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fruit and Leaf Response to Different Source-Sink Ratios in Apple, at the Scale of the Fruit-Bearing Branch.
    Baïram E; leMorvan C; Delaire M; Buck-Sorlin G
    Front Plant Sci; 2019; 10():1039. PubMed ID: 31555309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of foliage distribution and leaf functions to light interception, transpiration and photosynthetic capacities in two apple cultivars at branch and tree scales.
    Massonnet C; Regnard JL; Lauri PE; Costes E; Sinoquet H
    Tree Physiol; 2008 May; 28(5):665-78. PubMed ID: 18316299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ experimental exposure of fruit-bearing shoots of apple trees to
    Imada S; Tani T; Tako Y; Moriya Y; Hisamatsu S
    J Environ Radioact; 2021 Jul; 233():106595. PubMed ID: 33827008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models for Predicting the Architecture of Different Shoot Types in Apple.
    Baïram E; Delaire M; Le Morvan C; Buck-Sorlin G
    Front Plant Sci; 2017; 8():65. PubMed ID: 28203241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato.
    Ho LC
    J Exp Bot; 1996 Aug; 47 Spec No():1239-43. PubMed ID: 21245255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription profiles reveal sugar and hormone signaling pathways mediating tree branch architecture in apple (Malus domestica Borkh.) grafted on different rootstocks.
    Chen Y; An X; Zhao D; Li E; Ma R; Li Z; Cheng C
    PLoS One; 2020; 15(7):e0236530. PubMed ID: 32706831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An update on source-to-sink carbon partitioning in tomato.
    Osorio S; Ruan YL; Fernie AR
    Front Plant Sci; 2014; 5():516. PubMed ID: 25339963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience?
    Paul MJ
    J Plant Physiol; 2021 Nov; 266():153537. PubMed ID: 34619557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into secondary growth in perennial plants: its unequal spatial and temporal dynamics in the apple (Malus domestica) is driven by architectural position and fruit load.
    Lauri PE; Kelner JJ; Trottier C; Costes E
    Ann Bot; 2010 Apr; 105(4):607-16. PubMed ID: 20228088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sink strength as a determinant of dry matter partitioning in the whole plant.
    Marcelis LF
    J Exp Bot; 1996 Aug; 47 Spec No():1281-91. PubMed ID: 21245260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variability in carbon- and nitrogen-related traits in apple trees: the effects of the light environment and crop load.
    Ngao J; Martinez S; Marquier A; Bluy S; Saint-Joanis B; Costes E; Pallas B
    J Exp Bot; 2021 Feb; 72(5):1933-1945. PubMed ID: 33249486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Within-Tree Organ Distances on Floral Induction and Fruit Growth in Apple Tree: Implication of Carbohydrate and Gibberellin Organ Contents.
    Belhassine F; Martinez S; Bluy S; Fumey D; Kelner JJ; Costes E; Pallas B
    Front Plant Sci; 2019; 10():1233. PubMed ID: 31695709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoperiodic and genetic control of carbon partitioning in peas and its relationship to apical senescence.
    Kelly MO; Davies PJ
    Plant Physiol; 1988 Mar; 86(3):978-82. PubMed ID: 16666020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apple tree adaptation to shade in agroforestry: an architectural approach.
    Pitchers B; Do FC; Pradal C; Dufour L; Lauri PÉ
    Am J Bot; 2021 May; 108(5):732-743. PubMed ID: 33934329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorbitol metabolism and sink-source interconversions in developing apple leaves.
    Loescher WH; Marlow GC; Kennedy RA
    Plant Physiol; 1982 Aug; 70(2):335-9. PubMed ID: 16662490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of (13)C-photosynthate from spur leaves during fruit growth of three Japanese pear (Pyrus pyrifolia) cultivars differing in maturation date.
    Zhang C; Tanabe K; Tamura F; Itai A; Wang S
    Ann Bot; 2005 Mar; 95(4):685-93. PubMed ID: 15655106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.
    Greer DH; Wünsche JN; Norling CL; Wiggins HN
    Tree Physiol; 2006 Jan; 26(1):105-11. PubMed ID: 16203720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.