BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2507203)

  • 1. Renal venous wedge pressure in renal wrap hypertension in rabbits.
    Denton KM; Anderson WP
    Clin Exp Pharmacol Physiol; 1989 Aug; 16(8):681-4. PubMed ID: 2507203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of angiotensin II in renal wrap hypertension.
    Denton KM; Anderson WP
    Hypertension; 1985; 7(6 Pt 1):893-8. PubMed ID: 3000937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of renal denervation on the development of cellophane-wrap hypertension in rabbits.
    Kline RL; Denton KM; Anderson WP
    Clin Exp Hypertens A; 1986; 8(8):1327-42. PubMed ID: 3545556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal and systemic vascular conductances in renal wrap hypertension in rabbits.
    Takata M; Denton KM; Anderson WP
    J Hypertens; 1988 Sep; 6(9):719-22. PubMed ID: 3183375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertension in Page (cellophane-wrapped) kidney is due to interstitial nephritis.
    Vanegas V; Ferrebuz A; Quiroz Y; Rodríguez-Iturbe B
    Kidney Int; 2005 Sep; 68(3):1161-70. PubMed ID: 16105047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal blood flow and glomerular filtration rate in renal wrap hypertension in rabbits.
    Denton KM; Anderson WP; Korner PI
    J Hypertens; 1983 Dec; 1(4):351-5. PubMed ID: 6398329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in cardiac output and total peripheral resistance during development of renal hypertension in the rabbit: lack of confomity with the autoregulation theory.
    Fletcher PJ; Korner PI; Angus JA; Oliver JR
    Circ Res; 1976 Nov; 39(5):633-9. PubMed ID: 975451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural factors increase blood pressure through the interaction of resistance vessel geometry with neurohumoral and local factors: estimates in rabbits with renal cellophane-wrap hypertension with intact effectors and during neurohumoral blockade.
    Wright CE; Angus JA; Korner PI
    J Hypertens; 2002 Mar; 20(3):471-83. PubMed ID: 11875315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effect of renal wrap hypertension on aortic smooth muscle polyploidy in the rat and rabbit.
    Black MJ; Campbell JH; Campbell GR
    Clin Exp Pharmacol Physiol; 1994 Mar; 21(3):249-51. PubMed ID: 8076431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circulating digoxin-like immunoreactivity in renal hypertensive rabbits: lack of modulation by alterations in dietary sodium intake.
    Scott PJ; Little PJ; Bobik A
    J Hypertens; 1988 Mar; 6(3):205-9. PubMed ID: 3361119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular reactivity of rabbit isolated renal and femoral resistance arteries in renal wrap hypertension.
    Khammy MM; Angus JA; Wright CE
    Eur J Pharmacol; 2016 Feb; 773():32-41. PubMed ID: 26806799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of central adrenergic neurones in renal hypertension in rabbits.
    Chalmers JP; Dollery CT; Lewis PJ; Reid JL
    J Physiol; 1974 Apr; 238(2):403-11. PubMed ID: 4407465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic and regional haemodynamic profile of captopril in conscious rabbits with bilateral cellophane perinephritis hypertension.
    Bolt GR; Saxena PR
    Clin Exp Pharmacol Physiol; 1985; 12(4):417-26. PubMed ID: 3912085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of captopril and nicardipine on baroreflex control of sympathetic nerve activity and heart rate in renal hypertension.
    Kumagai H; Suzuki H; Matsumura Y; Ryuzaki M; Saruta T
    J Hypertens; 1992 Dec; 10(12):1485-91. PubMed ID: 1338079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of autonomic and non-autonomic components of resting hindlimb vascular resistance and reactivity to pressor substances in renal hypertensive rabbits.
    Angus JA; West MJ; Korner PI
    Clin Sci Mol Med Suppl; 1976 Dec; 3():57s-59s. PubMed ID: 1071682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympathetic nervous system in high sodium one-kidney, figure-8 renal hypertension.
    Hinojosa-Laborde C; Guerra P; Haywood JR
    Hypertension; 1992 Jul; 20(1):96-102. PubMed ID: 1618557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of sodium to the mechanism of one-kidney, renal-wrap hypertension.
    Haywood JR; Williams SF; Ball NA
    Am J Physiol; 1984 Nov; 247(5 Pt 2):H797-803. PubMed ID: 6496761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of forebrain periventricular lesions on the development of renal hypertension in rabbits.
    Fink GD; Bryan WJ
    Hypertension; 1982; 4(1):155-60. PubMed ID: 7061122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of angiotensin II in experimental renal hypertension in the rabbit.
    Johnson JA; Davis JO; Braverman B
    Am J Physiol; 1975 Jan; 228(1):11-6. PubMed ID: 1146999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms involved in two-kidney renal hypertension induced by constriction of one renal artery.
    Freeman RH; Davis JO; Watkins BE; Lohmeier TE
    Circ Res; 1977 May; 40(5 Suppl 1):I29-35. PubMed ID: 870229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.