These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 25072101)
1. pbs quantum dots capped with amorphous ZnS for bulk heterojunction solar cells: the solvent effect. Sun L; Wang Q ACS Appl Mater Interfaces; 2014 Aug; 6(16):14239-46. PubMed ID: 25072101 [TBL] [Abstract][Full Text] [Related]
2. PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications. Sun L; Koh ZY; Wang Q Adv Mater; 2013 Sep; 25(33):4598-604. PubMed ID: 23824682 [TBL] [Abstract][Full Text] [Related]
3. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl)trimethoxysilane as a capping molecule. Li H; Shih WY; Shih WH Nanotechnology; 2007 Dec; 18(49):495605. PubMed ID: 20442479 [TBL] [Abstract][Full Text] [Related]
4. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
5. Photovoltaic properties of multilayered quantum dot/quantum rod-sensitized TiO₂ solar cells fabricated by SILAR and electrophoresis. Cerdán-Pasarán A; López-Luke T; Esparza D; Zarazúa I; De la Rosa E; Fuentes-Ramírez R; Alatorre-Ordaz A; Sánchez-Solís A; Torres-Castro A; Zhang JZ Phys Chem Chem Phys; 2015 Jul; 17(28):18590-9. PubMed ID: 26113151 [TBL] [Abstract][Full Text] [Related]
6. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
7. Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells. Jin BB; Kong SY; Zhang GQ; Chen XQ; Ni HS; Zhang F; Wang DJ; Zeng JH J Colloid Interface Sci; 2021 Mar; 586():640-646. PubMed ID: 33183753 [TBL] [Abstract][Full Text] [Related]
8. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609 [TBL] [Abstract][Full Text] [Related]
9. Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Lee HJ; Chen P; Moon SJ; Sauvage F; Sivula K; Bessho T; Gamelin DR; Comte P; Zakeeruddin SM; Seok SI; Grätzel M; Nazeeruddin MK Langmuir; 2009 Jul; 25(13):7602-8. PubMed ID: 19499942 [TBL] [Abstract][Full Text] [Related]
10. All-solution-processed PbS quantum dot solar modules. Jang J; Shim HC; Ju Y; Song JH; An H; Yu JS; Kwak SW; Lee TM; Kim I; Jeong S Nanoscale; 2015 May; 7(19):8829-34. PubMed ID: 25907847 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots. Seo G; Seo J; Ryu S; Yin W; Ahn TK; Seok SI J Phys Chem Lett; 2014 Jun; 5(11):2015-20. PubMed ID: 26273888 [TBL] [Abstract][Full Text] [Related]
12. Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction. Liu IP; Chang CW; Teng H; Lee YL ACS Appl Mater Interfaces; 2014 Nov; 6(21):19378-84. PubMed ID: 25331272 [TBL] [Abstract][Full Text] [Related]
13. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476 [TBL] [Abstract][Full Text] [Related]
14. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
15. High performance photoelectrochemical hydrogen generation and solar cells with a double type II heterojunction. Lai LH; Gomulya W; Protesescu L; Kovalenko MV; Loi MA Phys Chem Chem Phys; 2014 Apr; 16(16):7531-7. PubMed ID: 24632882 [TBL] [Abstract][Full Text] [Related]
16. PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Ngo TT; Masi S; Mendez PF; Kazes M; Oron D; Seró IM Nanoscale Adv; 2019 Oct; 1(10):4109-4118. PubMed ID: 36132121 [TBL] [Abstract][Full Text] [Related]
17. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals. Saha SK; Bera A; Pal AJ ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277 [TBL] [Abstract][Full Text] [Related]
18. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Lai LH; Protesescu L; Kovalenko MV; Loi MA Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835 [TBL] [Abstract][Full Text] [Related]
19. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. Etgar L; Moehl T; Gabriel S; Hickey SG; Eychmüller A; Grätzel M ACS Nano; 2012 Apr; 6(4):3092-9. PubMed ID: 22409478 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes. Tian J; Shen T; Liu X; Fei C; Lv L; Cao G Sci Rep; 2016 Mar; 6():23094. PubMed ID: 26975216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]