These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 25072102)
21. Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Yucuis RA; Stanier CO; Hornbuckle KC Chemosphere; 2013 Aug; 92(8):905-10. PubMed ID: 23541357 [TBL] [Abstract][Full Text] [Related]
22. Typical indoor concentrations and mass flow of cyclic volatile methylsiloxanes (cVMSs) in Dalian, China. Li Q; Lv X; Wang X; Hu J; Wang X; Ma J Chemosphere; 2020 Jun; 248():126020. PubMed ID: 32041064 [TBL] [Abstract][Full Text] [Related]
23. Spatial distribution and accumulation profiles of volatile methylsiloxanes in Tokyo Bay, Japan: Mass loadings and historical trends. Horii Y; Minomo K; Lam JCW; Yamashita N Sci Total Environ; 2022 Feb; 806(Pt 4):150821. PubMed ID: 34627924 [TBL] [Abstract][Full Text] [Related]
24. Seasonal and latitudinal variability in the atmospheric concentrations of cyclic volatile methyl siloxanes in the Northern Hemisphere. Wania F; Warner NA; McLachlan MS; Durham J; Miøen M; Lei YD; Xu S Environ Sci Process Impacts; 2023 Mar; 25(3):496-506. PubMed ID: 36826379 [TBL] [Abstract][Full Text] [Related]
25. Development of a New Passive Sampling Method for the Measurement of Atmospheric Linear and Cyclic Volatile Methyl Siloxanes. Okan F; Odabasi M; Yaman B; Dumanoglu Y Environ Sci Technol; 2021 Apr; 55(8):4522-4531. PubMed ID: 33769040 [TBL] [Abstract][Full Text] [Related]
26. Calibration and application of a passive air sampler (XAD-PAS) for volatile methyl siloxanes. Krogseth IS; Zhang X; Lei YD; Wania F; Breivik K Environ Sci Technol; 2013 May; 47(9):4463-70. PubMed ID: 23527480 [TBL] [Abstract][Full Text] [Related]
27. Passive air sampling of flame retardants and plasticizers in Canadian homes using PDMS, XAD-coated PDMS and PUF samplers. Okeme JO; Yang C; Abdollahi A; Dhal S; Harris SA; Jantunen LM; Tsirlin D; Diamond ML Environ Pollut; 2018 Aug; 239():109-117. PubMed ID: 29649757 [TBL] [Abstract][Full Text] [Related]
28. Reducing sampling artifacts in active air sampling methodology for remote monitoring and atmospheric fate assessment of cyclic volatile methylsiloxanes. Warner NA; Nikiforov V; Krogseth IS; Bjørneby SM; Kierkegaard A; Bohlin-Nizzetto P Chemosphere; 2020 Sep; 255():126967. PubMed ID: 32408127 [TBL] [Abstract][Full Text] [Related]
29. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven. Fromme H; Witte M; Fembacher L; Gruber L; Hagl T; Smolic S; Fiedler D; Sysoltseva M; Schober W Environ Int; 2019 May; 126():145-152. PubMed ID: 30798195 [TBL] [Abstract][Full Text] [Related]
30. Concentrations of Volatile Methyl Siloxanes in New York City Reflect Emissions from Personal Care and Industrial Use. Brunet CE; Marek RF; Stanier CO; Hornbuckle KC Environ Sci Technol; 2024 May; 58(20):8835-8845. PubMed ID: 38722766 [TBL] [Abstract][Full Text] [Related]
31. Per- and polyfluoroalkyl substances and volatile methyl siloxanes in global air: Spatial and temporal trends. Saini A; Chinnadurai S; Schuster JK; Eng A; Harner T Environ Pollut; 2023 Apr; 323():121291. PubMed ID: 36796663 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of two passive samplers for the analysis of organophosphate esters in the ambient air. Liu R; Lin Y; Liu R; Hu F; Ruan T; Jiang G Talanta; 2016 Jan; 147():69-75. PubMed ID: 26592578 [TBL] [Abstract][Full Text] [Related]
33. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Rauert C; Shoieb M; Schuster JK; Eng A; Harner T Environ Pollut; 2018 Jul; 238():94-102. PubMed ID: 29547866 [TBL] [Abstract][Full Text] [Related]
34. Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements. Xu S; Warner N; Bohlin-Nizzetto P; Durham J; McNett D Chemosphere; 2019 Aug; 228():460-468. PubMed ID: 31051348 [TBL] [Abstract][Full Text] [Related]
35. Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations. Holt E; Bohlin-Nizzetto P; Borůvková J; Harner T; Kalina J; Melymuk L; Klánová J Environ Pollut; 2017 Jan; 220(Pt B):1100-1111. PubMed ID: 27865659 [TBL] [Abstract][Full Text] [Related]
36. Marine vegetation analysis for the determination of volatile methylsiloxanes in coastal areas. Rocha F; Homem V; Castro-Jiménez J; Ratola N Sci Total Environ; 2019 Feb; 650(Pt 2):2364-2373. PubMed ID: 30292992 [TBL] [Abstract][Full Text] [Related]
37. Spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls around a municipal solid waste incinerator, determined using polyurethane foam passive air samplers. Gao L; Zhang Q; Liu L; Li C; Wang Y Chemosphere; 2014 Nov; 114():317-26. PubMed ID: 25113218 [TBL] [Abstract][Full Text] [Related]
38. Effects of sampling interval on the passive air sampling of atmospheric PCBs levels. Sakin AE; Esen F; Tasdemir Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):673-679. PubMed ID: 28332915 [TBL] [Abstract][Full Text] [Related]
39. Application of sorbent impregnated polyurethane foam (SIP) disk passive air samplers for investigating organochlorine pesticides and polybrominated diphenyl ethers at the global scale. Koblizkova M; Genualdi S; Lee SC; Harner T Environ Sci Technol; 2012 Jan; 46(1):391-6. PubMed ID: 22103600 [TBL] [Abstract][Full Text] [Related]
40. Tube-type passive sampling of cyclic volatile methyl siloxanes (cVMSs) and benzene series simultaneously in indoor air: uptake rate determination and field application. Li Q; Wang X; Wang X; Lan Y; Hu J Environ Sci Process Impacts; 2020 Apr; 22(4):973-980. PubMed ID: 32044895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]