These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25072142)

  • 21. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells.
    Yoshida T; Naito Y; Yasuhara H; Sasaki K; Kawaji H; Kawai J; Naito M; Okuda H; Obika S; Inoue T
    Genes Cells; 2019 Dec; 24(12):827-835. PubMed ID: 31637814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA.
    Laptev AV; Lu Z; Colige A; Prockop DJ
    Biochemistry; 1994 Sep; 33(36):11033-9. PubMed ID: 8086420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms.
    Pollak AJ; Hickman JH; Liang XH; Crooke ST
    Nucleic Acid Ther; 2020 Oct; 30(5):312-324. PubMed ID: 32589504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry.
    Gabler A; Krebs S; Seichter D; Förster M
    Nucleic Acids Res; 2003 Aug; 31(15):e79. PubMed ID: 12888531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the Activity of Antisense Oligonucleotides Targeting Multiple Genes by RNA-Sequencing.
    Michel S; Klar R; Jaschinski F
    Nucleic Acid Ther; 2021 Dec; 31(6):427-435. PubMed ID: 34251864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides.
    Villemaire J; Dion I; Elela SA; Chabot B
    J Biol Chem; 2003 Dec; 278(50):50031-9. PubMed ID: 14522969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides.
    Østergaard ME; Kumar P; Nichols J; Watt A; Sharma PK; Nielsen P; Seth PP
    Nucleic Acid Ther; 2015 Oct; 25(5):266-74. PubMed ID: 26222265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the Prion Protein Binding Properties of Antisense Oligonucleotides.
    Reidenbach AG; Minikel EV; Zhao HT; Guzman SG; Leed AJ; Mesleh MF; Kordasiewicz HB; Schreiber SL; Vallabh SM
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31861275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of multiple-turnover capability of locked nucleic acid antisense oligonucleotides in cell-free RNase H-mediated antisense reaction and in mice.
    Yamamoto T; Fujii N; Yasuhara H; Wada S; Wada F; Shigesada N; Harada-Shiba M; Obika S
    Nucleic Acid Ther; 2014 Aug; 24(4):283-90. PubMed ID: 24758560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Template-directed synthesis of a small molecule-antisense conjugate targeting an mRNA structure.
    Liu Y; Rodriguez L; Wolfe MS
    Bioorg Chem; 2014 Jun; 54():7-11. PubMed ID: 24691171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3'-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry.
    Upadhayaya R; Deshpande SG; Li Q; Kardile RA; Sayyed AY; Kshirsagar EK; Salunke RV; Dixit SS; Zhou C; Földesi A; Chattopadhyaya J
    J Org Chem; 2011 Jun; 76(11):4408-31. PubMed ID: 21500818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice.
    Hagedorn PH; Pontoppidan M; Bisgaard TS; Berrera M; Dieckmann A; Ebeling M; Møller MR; Hudlebusch H; Jensen ML; Hansen HF; Koch T; Lindow M
    Nucleic Acids Res; 2018 Jun; 46(11):5366-5380. PubMed ID: 29790953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA.
    Scherr M; LeBon J; Castanotto D; Cunliffe HE; Meltzer PS; Ganser A; Riggs AD; Rossi JJ
    Mol Ther; 2001 Nov; 4(5):454-60. PubMed ID: 11708882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides.
    Hori SI; Mitsuoka Y; Kugimiya A
    Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis.
    Vickers TA; Koo S; Bennett CF; Crooke ST; Dean NM; Baker BF
    J Biol Chem; 2003 Feb; 278(9):7108-18. PubMed ID: 12500975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.
    Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST
    Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine-tuning of ENA gapmers as antisense oligonucleotides for sequence-specific inhibition.
    Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M
    Oligonucleotides; 2007; 17(3):291-301. PubMed ID: 17854269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical and biological characterization of hairpin and molecular beacon RNase H active antisense oligonucleotides.
    Østergaard ME; Thomas G; Koller E; Southwell AL; Hayden MR; Seth PP
    ACS Chem Biol; 2015 May; 10(5):1227-33. PubMed ID: 25654188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA modifications can affect RNase H1-mediated PS-ASO activity.
    Doxtader Lacy KA; Liang XH; Zhang L; Crooke ST
    Mol Ther Nucleic Acids; 2022 Jun; 28():814-828. PubMed ID: 35664704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of combinations of gapmer antisense oligonucleotides on the target reduction.
    Yanagidaira M; Yoshioka K; Nagata T; Nakao S; Miyata K; Yokota T
    Mol Biol Rep; 2023 Apr; 50(4):3539-3546. PubMed ID: 36787053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.