BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25072151)

  • 21. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.
    Batoni G; Maisetta G; Esin S
    Biochim Biophys Acta; 2016 May; 1858(5):1044-60. PubMed ID: 26525663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analogue synthesis reveals decoupling of antibiofilm and β-lactam potentiation activities of a lead 2-aminoimidazole adjuvant against Mycobacterium smegmatis.
    Martin SE; Nguyen CM; Basaraba RJ; Melander C
    Chem Biol Drug Des; 2018 Aug; 92(2):1403-1408. PubMed ID: 29663670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The devil's advocacy: when and why inhaled therapies for tuberculosis may not work.
    Yadav AB; Singh AK; Verma RK; Mohan M; Agrawal AK; Misra A
    Tuberculosis (Edinb); 2011 Jan; 91(1):65-6. PubMed ID: 21106442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The α1β1 region is crucial for biofilm enhancement activity of MTC28 in Mycobacterium smegmatis.
    Kundu P; Dutta D; Kumar Das A
    FEBS Lett; 2017 Oct; 591(20):3333-3347. PubMed ID: 28833086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell Wall Associated Factors of Mycobacterium tuberculosis as Major Virulence Determinants: Current Perspectives in Drugs Discovery and Design.
    Singh G; Kumar A; Maan P; Kaur J
    Curr Drug Targets; 2017 Nov; 18(16):1904-1918. PubMed ID: 28699515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth.
    Carniello V; Peterson BW; van der Mei HC; Busscher HJ
    Adv Colloid Interface Sci; 2018 Nov; 261():1-14. PubMed ID: 30376953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non-Biofilm Cultures, and Mycobacterium tuberculosis.
    Garrison AT; Abouelhassan Y; Kallifidas D; Bai F; Ukhanova M; Mai V; Jin S; Luesch H; Huigens RW
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14819-23. PubMed ID: 26480852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid In Vivo.
    Chuang YM; Dutta NK; Hung CF; Wu TC; Rubin H; Karakousis PC
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6460-6470. PubMed ID: 27527086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era.
    Kostakioti M; Hadjifrangiskou M; Hultgren SJ
    Cold Spring Harb Perspect Med; 2013 Apr; 3(4):a010306. PubMed ID: 23545571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.
    Simões LC; Simões M; Vieira MJ
    Antonie Van Leeuwenhoek; 2010 Oct; 98(3):317-29. PubMed ID: 20405208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mycobacterial Biofilms.
    Richards JP; Ojha AK
    Microbiol Spectr; 2014 Oct; 2(5):. PubMed ID: 26104368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging drugs and drug targets against tuberculosis.
    Lambert N; Abdalla AE; Duan X; Xie J
    J Drug Target; 2017 Apr; 25(4):296-306. PubMed ID: 27822967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.
    Trivedi A; Mavi PS; Bhatt D; Kumar A
    Nat Commun; 2016 Apr; 7():11392. PubMed ID: 27109928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Mycobacterium biofilm development and novel measures against antibiotics resistance.
    Abudukadier A; Zhang QA; Li PB; Xie JP
    Yi Chuan; 2024 Jan; 46(1):34-45. PubMed ID: 38230455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased Vancomycin Susceptibility in Mycobacteria: a New Approach To Identify Synergistic Activity against Multidrug-Resistant Mycobacteria.
    Soetaert K; Rens C; Wang XM; De Bruyn J; Lanéelle MA; Laval F; Lemassu A; Daffé M; Bifani P; Fontaine V; Lefèvre P
    Antimicrob Agents Chemother; 2015 Aug; 59(8):5057-60. PubMed ID: 26033733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Candidate targets for new antivirulence drugs: selected cases of bacterial adhesion and biofilm formation.
    Klemm P; Hancock V; Kvist M; Schembri MA
    Future Microbiol; 2007 Dec; 2(6):643-53. PubMed ID: 18041905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies.
    de la Fuente-Núñez C; Reffuveille F; Fernández L; Hancock RE
    Curr Opin Microbiol; 2013 Oct; 16(5):580-9. PubMed ID: 23880136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anti-biofilm activity of A22 ((S-3,4-dichlorobenzyl) isothiourea hydrochloride) against Pseudomonas aeruginosa: Influence on biofilm formation, motility and bioadhesion.
    Bonez PC; Rossi GG; Bandeira JR; Ramos AP; Mizdal CR; Agertt VA; Dalla Nora ESS; de Souza ME; Dos Santos Alves CF; Dos Santos FS; Gündel A; de Almeida Vaucher R; Santos RCV; de Campos MMA
    Microb Pathog; 2017 Oct; 111():6-13. PubMed ID: 28804018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.