BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 25072168)

  • 21. Practical evaluation of 11 de novo assemblers in metagenome assembly.
    Forouzan E; Shariati P; Mousavi Maleki MS; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2018 Aug; 151():99-105. PubMed ID: 29953874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ViraPipe: scalable parallel pipeline for viral metagenome analysis from next generation sequencing reads.
    Maarala AI; Bzhalava Z; Dillner J; Heljanko K; Bzhalava D
    Bioinformatics; 2018 Mar; 34(6):928-935. PubMed ID: 29106455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.
    Rowe W; Baker KS; Verner-Jeffreys D; Baker-Austin C; Ryan JJ; Maskell D; Pearce G
    PLoS One; 2015; 10(7):e0133492. PubMed ID: 26197475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps.
    Dilthey AT; Jain C; Koren S; Phillippy AM
    Nat Commun; 2019 Jul; 10(1):3066. PubMed ID: 31296857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks.
    Gori F; Folino G; Jetten MS; Marchiori E
    Bioinformatics; 2011 Jan; 27(2):196-203. PubMed ID: 21127032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting topic modeling to boost metagenomic reads binning.
    Zhang R; Cheng Z; Guan J; Zhou S
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S2. PubMed ID: 25859745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shared Nearest Neighbor Clustering in a Locality Sensitive Hashing Framework.
    Kanj S; Brüls T; Gazut S
    J Comput Biol; 2018 Feb; 25(2):236-250. PubMed ID: 28953425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metagenome Assembly and Contig Assignment.
    Zhang Q
    Methods Mol Biol; 2018; 1849():179-192. PubMed ID: 30298255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infer Metagenomic Abundance and Reveal Homologous Genomes Based on the Structure of Taxonomy Tree.
    Qiu YQ; Tian X; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1112-22. PubMed ID: 26451823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MetaDecoder: a novel method for clustering metagenomic contigs.
    Liu CC; Dong SS; Chen JB; Wang C; Ning P; Guo Y; Yang TL
    Microbiome; 2022 Mar; 10(1):46. PubMed ID: 35272700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating DNA coverage and abundance in metagenomes using a gamma approximation.
    Hooper SD; Dalevi D; Pati A; Mavromatis K; Ivanova NN; Kyrpides NC
    Bioinformatics; 2010 Feb; 26(3):295-301. PubMed ID: 20008478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metagenomics using next-generation sequencing.
    Bragg L; Tyson GW
    Methods Mol Biol; 2014; 1096():183-201. PubMed ID: 24515370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating the total genome length of a metagenomic sample using k-mers.
    Hua K; Zhang X
    BMC Genomics; 2019 Apr; 20(Suppl 2):183. PubMed ID: 30967110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.
    Huson DH; Tappu R; Bazinet AL; Xie C; Cummings MP; Nieselt K; Williams R
    Microbiome; 2017 Jan; 5(1):11. PubMed ID: 28122610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LRTK: a platform agnostic toolkit for linked-read analysis of both human genome and metagenome.
    Yang C; Zhang Z; Huang Y; Xie X; Liao H; Xiao J; Veldsman WP; Yin K; Fang X; Zhang L
    Gigascience; 2024 Jan; 13():. PubMed ID: 38869148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metagenomic analysis through the extended Burrows-Wheeler transform.
    Guerrini V; Louza FA; Rosone G
    BMC Bioinformatics; 2020 Sep; 21(Suppl 8):299. PubMed ID: 32938362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unsupervised two-way clustering of metagenomic sequences.
    Prabhakara S; Acharya R
    J Biomed Biotechnol; 2012; 2012():153647. PubMed ID: 22577288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods.
    Mavromatis K; Ivanova N; Barry K; Shapiro H; Goltsman E; McHardy AC; Rigoutsos I; Salamov A; Korzeniewski F; Land M; Lapidus A; Grigoriev I; Richardson P; Hugenholtz P; Kyrpides NC
    Nat Methods; 2007 Jun; 4(6):495-500. PubMed ID: 17468765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ORFome assembly approach to metagenomics sequences analysis.
    Ye Y; Tang H
    Comput Syst Bioinformatics Conf; 2008; 7():3-13. PubMed ID: 19642264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.