These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2507227)

  • 1. Osmometric behavior of Drosophila melanogaster embryos.
    Lin TT; Pitt RE; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):453-71. PubMed ID: 2507227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-step method for permeabilization of Drosophila eggs.
    Lynch DV; Lin TT; Myers SP; Leibo SP; Macintyre RJ; Pitt RE; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):445-52. PubMed ID: 2507226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subfreezing volumetric behavior and stochastic modeling of intracellular ice formation in Drosophila melanogaster embryos.
    Pitt RE; Myers SP; Lin TT; Steponkus PL
    Cryobiology; 1991 Feb; 28(1):72-86. PubMed ID: 1901783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of intracellular ice formation in Drosophila melanogaster embryos.
    Myers SP; Pitt RE; Lynch DV; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):472-84. PubMed ID: 2507228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages.
    Ruffing NA; Steponkus PL; Pitt RE; Parks JE
    Cryobiology; 1993 Dec; 30(6):562-80. PubMed ID: 8306705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing.
    Devireddy RV; Swanlund DJ; Roberts KP; Pryor JL; Bischof JC
    Hum Reprod; 2000 May; 15(5):1125-35. PubMed ID: 10783365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a kinetic model for intracellular ice formation based on the extent of supercooling.
    Pitt RE; Chandrasekaran M; Parks JE
    Cryobiology; 1992 Jun; 29(3):359-73. PubMed ID: 1499321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cryoprotectant solutes on water permeability of human spermatozoa.
    Gilmore JA; McGann LE; Liu J; Gao DY; Peter AT; Kleinhans FW; Critser JK
    Biol Reprod; 1995 Nov; 53(5):985-95. PubMed ID: 8527530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of cooling and warming rate and developmental stage to the survival of Drosophila embryos cooled to -205 degrees C.
    Mazur P; Cole KW; Schreuders PD; Mahowald AP
    Cryobiology; 1993 Feb; 30(1):45-73. PubMed ID: 8440129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus.
    Pinisetty D; Huang C; Dong Q; Tiersch TR; Devireddy RV
    Cryobiology; 2005 Jun; 50(3):250-63. PubMed ID: 15925577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water permeability and its activation energy for individual hamster pancreatic islet cells.
    Liu C; Benson CT; Gao D; Haag BW; McGann LE; Critser JK
    Cryobiology; 1995 Oct; 32(5):493-502. PubMed ID: 7587287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts.
    Pitt RE; Steponkus PL
    Cryobiology; 1989 Feb; 26(1):44-63. PubMed ID: 2924592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water transport and estimated transmembrane potential during freezing of mouse oocytes.
    Toner M; Cravalho EG; Armant DR
    J Membr Biol; 1990 May; 115(3):261-72. PubMed ID: 2374161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).
    Xu Y; Zhao G; Zhou X; Ding W; Shu Z; Gao D
    Cryobiology; 2014 Apr; 68(2):294-302. PubMed ID: 24582893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water permeability, Lp, of the mouse sperm plasma membrane and its activation energy are strongly dependent on interaction of the plasma membrane with the sperm cytoskeleton.
    Noiles EE; Thompson KA; Storey BT
    Cryobiology; 1997 Aug; 35(1):79-92. PubMed ID: 9302770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing response and optimal cooling rates for cryopreserving sperm cells of striped bass, Morone saxatilis.
    Thirumala S; Campbell WT; Vicknair MR; Tiersch TR; Devireddy RV
    Theriogenology; 2006 Sep; 66(4):964-73. PubMed ID: 16574210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter.
    Devireddy RV; Raha D; Bischof JC
    Cryobiology; 1998 Mar; 36(2):124-55. PubMed ID: 9527874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of equine sperm: optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry.
    Devireddy RV; Swanlund DJ; Olin T; Vincente W; Troedsson MH; Bischof JC; Roberts KP
    Biol Reprod; 2002 Jan; 66(1):222-31. PubMed ID: 11751286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryomicroscope investigation and thermodynamic modeling of the freezing of unfertilized hamster ova.
    Shabana M; McGrath JJ
    Cryobiology; 1988 Aug; 25(4):338-54. PubMed ID: 3409708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.