These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25072278)

  • 1. Large-scale and environmentally friendly synthesis of pH-responsive oil-repellent polymer brush surfaces under ambient conditions.
    Dunderdale GJ; Urata C; Miranda DF; Hozumi A
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11864-8. PubMed ID: 25072278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids.
    Dunderdale GJ; England MW; Urata C; Hozumi A
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12220-9. PubMed ID: 25988214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An underwater superoleophobic surface that can be activated/deactivated via external triggers.
    Dunderdale GJ; Urata C; Hozumi A
    Langmuir; 2014 Nov; 30(44):13438-46. PubMed ID: 25318101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness.
    Bhairamadgi NS; Pujari SP; Leermakers FA; van Rijn CJ; Zuilhof H
    Langmuir; 2014 Mar; 30(8):2068-76. PubMed ID: 24555721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes.
    Saigal T; Dong H; Matyjaszewski K; Tilton RD
    Langmuir; 2010 Oct; 26(19):15200-9. PubMed ID: 20831185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.
    Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML
    Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and morphological study of thick benzyl methacrylate-styrene diblock copolymer brushes.
    Munirasu S; Karunakaran RG; Rühe J; Dhamodharan R
    Langmuir; 2011 Nov; 27(21):13284-92. PubMed ID: 21928787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyelectrolyte brush pH-response at the silica-aqueous solution interface: a kinetic and equilibrium investigation.
    Cheesman BT; Smith EG; Murdoch TJ; Guibert C; Webber GB; Edmondson S; Wanless EJ
    Phys Chem Chem Phys; 2013 Sep; 15(34):14502-10. PubMed ID: 23897091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell.
    Men Y; Drechsler M; Yuan J
    Macromol Rapid Commun; 2013 Nov; 34(21):1721-7. PubMed ID: 24186465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of colloidal substrate curvature on pH-responsive polyelectrolyte brush growth.
    Cheesman BT; Neilson AJ; Willott JD; Webber GB; Edmondson S; Wanless EJ
    Langmuir; 2013 May; 29(20):6131-40. PubMed ID: 23617419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-responsive polymer brushes on the surface of colloid particles.
    Zhang M; Liu L; Zhao H; Yang Y; Fu G; He B
    J Colloid Interface Sci; 2006 Sep; 301(1):85-91. PubMed ID: 16780862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization.
    Kitano H; Kondo T; Suzuki H; Ohno K
    J Colloid Interface Sci; 2010 May; 345(2):325-31. PubMed ID: 20206360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer brushes patterned with micrometer-scale chemical gradients using laminar co-flow.
    Koo HJ; Waynant KV; Zhang C; Braun PV
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14320-6. PubMed ID: 24960623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density.
    Wang S; Zhu Y
    Langmuir; 2009 Dec; 25(23):13448-55. PubMed ID: 19863074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonfouling capture-release substrates based on polymer brushes for separation of water-dispersed oil droplets.
    Tan KY; Hughes TL; Nagl M; Huck WT
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6403-9. PubMed ID: 23157222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.