BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25072293)

  • 1. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited.
    Aghamohammadzadeh S; Smaczynska-de Rooij II; Ayscough KR
    PLoS One; 2014; 9(7):e103311. PubMed ID: 25072293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast.
    Newpher TM; Smith RP; Lemmon V; Lemmon SK
    Dev Cell; 2005 Jul; 9(1):87-98. PubMed ID: 15992543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clathrin- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans.
    Epp E; Nazarova E; Regan H; Douglas LM; Konopka JB; Vogel J; Whiteway M
    mBio; 2013 Aug; 4(5):e00476-13. PubMed ID: 23982070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis.
    Taylor MJ; Lampe M; Merrifield CJ
    PLoS Biol; 2012; 10(4):e1001302. PubMed ID: 22505844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.
    Tolsma TO; Cuevas LM; Di Pietro SM
    Traffic; 2018 Jun; 19(6):446-462. PubMed ID: 29542219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved roles for yeast Rho1 and mammalian RhoA GTPases in clathrin-independent endocytosis.
    Prosser DC; Wendland B
    Small GTPases; 2012; 3(4):229-35. PubMed ID: 23238351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking.
    Xu G; Su H; Carter CB; Fröhlich O; Chen G
    Am J Physiol Cell Physiol; 2012 Apr; 302(7):C1012-8. PubMed ID: 22262062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis.
    Yarar D; Waterman-Storer CM; Schmid SL
    Mol Biol Cell; 2005 Feb; 16(2):964-75. PubMed ID: 15601897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular design for the clathrin- and actin-mediated endocytosis machinery.
    Kaksonen M; Toret CP; Drubin DG
    Cell; 2005 Oct; 123(2):305-20. PubMed ID: 16239147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization.
    Lee SJ; Seo BR; Koh JY
    Mol Brain; 2015 Dec; 8(1):84. PubMed ID: 26637294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counterregulation of clathrin-mediated endocytosis by the actin and microtubular cytoskeleton in human neutrophils.
    Uriarte SM; Jog NR; Luerman GC; Bhimani S; Ward RA; McLeish KR
    Am J Physiol Cell Physiol; 2009 Apr; 296(4):C857-67. PubMed ID: 19176760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interaction between Sla1p and Sla2p plays a role in regulating actin dynamics and endocytosis in budding yeast.
    Gourlay CW; Dewar H; Warren DT; Costa R; Satish N; Ayscough KR
    J Cell Sci; 2003 Jun; 116(Pt 12):2551-64. PubMed ID: 12734398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin- and microtubule-based motors contribute to clathrin-independent endocytosis in yeast.
    Woodard TK; Rioux DJ; Prosser DC
    Mol Biol Cell; 2023 Nov; 34(12):ar117. PubMed ID: 37647159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics.
    Warren DT; Andrews PD; Gourlay CW; Ayscough KR
    J Cell Sci; 2002 Apr; 115(Pt 8):1703-15. PubMed ID: 11950888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLAC, a complex between Sla1 and Las17, regulates actin polymerization during clathrin-mediated endocytosis.
    Feliciano D; Di Pietro SM
    Mol Biol Cell; 2012 Nov; 23(21):4256-72. PubMed ID: 22973053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin.
    Prosser DC; Drivas TG; Maldonado-Báez L; Wendland B
    J Cell Biol; 2011 Nov; 195(4):657-71. PubMed ID: 22065638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interactions between the p35 subunit of the Arp2/3 complex and calmodulin in yeast.
    Schaerer-Brodbeck C; Riezman H
    Mol Biol Cell; 2000 Apr; 11(4):1113-27. PubMed ID: 10749918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-cell imaging of early coat protein dynamics during clathrin-mediated endocytosis.
    Miyashita M; Kashikuma R; Nagano M; Toshima JY; Toshima J
    Biochim Biophys Acta Mol Cell Res; 2018 Nov; 1865(11 Pt A):1566-1578. PubMed ID: 30077636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis.
    Moreno-Layseca P; Jäntti NZ; Godbole R; Sommer C; Jacquemet G; Al-Akhrass H; Conway JRW; Kronqvist P; Kallionpää RE; Oliveira-Ferrer L; Cervero P; Linder S; Aepfelbacher M; Zauber H; Rae J; Parton RG; Disanza A; Scita G; Mayor S; Selbach M; Veltel S; Ivaska J
    Nat Cell Biol; 2021 Oct; 23(10):1073-1084. PubMed ID: 34616024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling actin dynamics to the endocytic process in Saccharomyces cerevisiae.
    Ayscough KR
    Protoplasma; 2005 Oct; 226(1-2):81-8. PubMed ID: 16231104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.