BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25072630)

  • 1. Effect of groundwater--lake interactions on arsenic enrichment in freshwater beach aquifers.
    Lee J; Robinson C; Couture RM
    Environ Sci Technol; 2014 Sep; 48(17):10174-81. PubMed ID: 25072630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of Arsenic in Nearshore Aquifers Adjacent to Large Inland Lakes.
    Rakhimbekova S; O'Carroll DM; Robinson CE
    Environ Sci Technol; 2021 Jun; 55(12):8079-8089. PubMed ID: 34043335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors controlling phosphorus mobility in nearshore aquifers adjacent to large lakes.
    Rakhimbekova S; O'Carroll DM; Robinson CE
    Sci Total Environ; 2021 Dec; 799():149443. PubMed ID: 34371419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Transient Wave Forcing on the Behavior of Arsenic in a Nearshore Aquifer.
    Rakhimbekova S; O'Carroll DM; Andersen MS; Wu MZ; Robinson CE
    Environ Sci Technol; 2018 Nov; 52(21):12338-12348. PubMed ID: 30256114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico.
    Ortega-Guerrero A
    Environ Geochem Health; 2017 Oct; 39(5):987-1003. PubMed ID: 27538751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: evidences from chemical and isotopic characteristics.
    Guo H; Zhang D; Wen D; Wu Y; Ni P; Jiang Y; Guo Q; Li F; Zheng H; Zhou Y
    Sci Total Environ; 2014 Aug; 490():590-602. PubMed ID: 24880548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally Released Arsenic in Porewater from Sediments in the Cold Lake Area of Alberta, Canada.
    Javed MB; Siddique T
    Environ Sci Technol; 2016 Mar; 50(5):2191-9. PubMed ID: 26839972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.
    Huang S; Liu C; Wang Y; Zhan H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):478-89. PubMed ID: 24345245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada.
    Van Den Berghe MD; Jamieson HE; Palmer MJ
    Environ Pollut; 2018 Mar; 234():630-641. PubMed ID: 29223820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic in groundwater of the Paraiba do Sul delta, Brazil: An atmospheric source?
    Mirlean N; Baisch P; Diniz D
    Sci Total Environ; 2014 Jun; 482-483():148-56. PubMed ID: 24642100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA.
    Yang Q; Culbertson CW; Nielsen MG; Schalk CW; Johnson CD; Marvinney RG; Stute M; Zheng Y
    Sci Total Environ; 2015 Feb; 505():1291-307. PubMed ID: 24842411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments.
    Ballent A; Corcoran PL; Madden O; Helm PA; Longstaffe FJ
    Mar Pollut Bull; 2016 Sep; 110(1):383-395. PubMed ID: 27342902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan.
    Al Lawati WM; Jean JS; Kulp TR; Lee MK; Polya DA; Liu CC; van Dongen BE
    J Hazard Mater; 2013 Nov; 262():970-9. PubMed ID: 22964390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early diagenetic behavior of arsenic in the sediment of the hypersaline Maharlu Lake, southern Iran.
    Khosravi R; Zarei M; Vogel H; Bigalke M
    Chemosphere; 2019 Dec; 237():124465. PubMed ID: 31374397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow-lake biogeochemistry and alluvial geomorphology.
    Ghosh D; Donselaar ME
    Sci Total Environ; 2023 Jan; 856(Pt 1):158952. PubMed ID: 36150597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ characterization and assessment of arsenic mobility in lake sediments.
    Sun Q; Ding S; Wang Y; Xu L; Wang D; Chen J; Zhang C
    Environ Pollut; 2016 Jul; 214():314-323. PubMed ID: 27107255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.