BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25072934)

  • 1. Thermodynamics of copolymer solutions: how the pair interactions contribute to the overall effect.
    Bercea M; Wolf BA
    J Phys Chem B; 2014 Aug; 118(31):9414-9. PubMed ID: 25072934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pullulan and dextran: uncommon composition dependent Flory-Huggins interaction parameters of their aqueous solutions.
    Eckelt J; Sugaya R; Wolf BA
    Biomacromolecules; 2008 Jun; 9(6):1691-7. PubMed ID: 18471012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram.
    Pajula K; Taskinen M; Lehto VP; Ketolainen J; Korhonen O
    Mol Pharm; 2010 Jun; 7(3):795-804. PubMed ID: 20361760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of solvent quality on the composition of copolymers: experiment and theory for solutions of P(MMA-ran-t-BMA) in toluene and in chloroform.
    Bercea M; Wolf BA
    Soft Matter; 2015 Jan; 11(3):615-21. PubMed ID: 25434290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts.
    Chremos A; Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2014 Feb; 140(5):054909. PubMed ID: 24511981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Modeling Approach to Determine the Flory-Huggins Interaction Parameter for Polymer Miscibility Analysis.
    Callaway CP; Hendrickson K; Bond N; Lee SM; Sood P; Jang SS
    Chemphyschem; 2018 Jul; 19(13):1655-1664. PubMed ID: 29575473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of thermodynamic properties of poly(methyl methacrylate-co-n-butylacrylate-co-cyclopentyl styryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography.
    Zou QC; Zhang SL; Wang SM; Wu LM
    J Chromatogr A; 2006 Oct; 1129(2):255-61. PubMed ID: 16846607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the chain composition on the thermodynamic properties of binary and ternary polymer solutions.
    Csáki KF; Nagy M; Csempesz F
    Langmuir; 2005 Jan; 21(2):761-6. PubMed ID: 15641852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic degradation of poly(methyl methacrylate-co-alkyl acrylate) copolymers.
    Konaganti VK; Madras G
    Ultrason Sonochem; 2010 Feb; 17(2):403-8. PubMed ID: 19775925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of block copolymers with and without salt.
    Teran AA; Balsara NP
    J Phys Chem B; 2014 Jan; 118(1):4-17. PubMed ID: 24229067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration dependence of the Flory-Huggins interaction parameter in aqueous solutions of capped PEO chains.
    Chaudhari MI; Pratt LR; Paulaitis ME
    J Chem Phys; 2014 Dec; 141(24):244908. PubMed ID: 25554181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the polyethylene and poly(L-lactide) triblock copolymer: a dissipative particle dynamics study.
    Wang YC; Lee WJ; Ju SP
    J Chem Phys; 2009 Sep; 131(12):124901. PubMed ID: 19791915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels.
    Mequanint K; Patel A; Bezuidenhout D
    Biomacromolecules; 2006 Mar; 7(3):883-91. PubMed ID: 16529427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic characterization of poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate) by inverse gas chromatography.
    Papadopoulou SK; Panayiotou C
    J Chromatogr A; 2012 Mar; 1229():230-6. PubMed ID: 22336261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-Angle X-ray Scattering Analysis on the Estimation of Interaction Parameter of Poly(
    Lee SI; Seo MG; Huh J; Paik HJ
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular thermodynamic approach to predict the secondary structure of homopolypeptides in aqueous systems.
    Chen CC; Zhu Y; King JA; Evans LB
    Biopolymers; 1992 Oct; 32(10):1375-92. PubMed ID: 1420965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of linear charge density and counterion quality in thermodynamic properties of strong acid type polyelectrolytes: divalent transition metal cations.
    Horvath J; Nagy M
    Langmuir; 2006 Dec; 22(26):10963-71. PubMed ID: 17154572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data.
    Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY
    J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: chain length and volume fraction effects on structural arrangement.
    Lee WJ; Ju SP; Wang YC; Chang JG
    J Chem Phys; 2007 Aug; 127(6):064902. PubMed ID: 17705622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.