These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25073133)

  • 1. Fourier-domain beamforming: the path to compressed ultrasound imaging.
    Chernyakova T; Eldar Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Aug; 61(8):1252-67. PubMed ID: 25073133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-Nyquist Sampling and Fourier Domain Beamforming in Volumetric Ultrasound Imaging.
    Burshtein A; Birk M; Chernyakova T; Eilam A; Kempinski A; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):703-16. PubMed ID: 26930678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier-Domain Beamforming and Structure-Based Reconstruction for Plane-Wave Imaging.
    Chernyakova T; Cohen R; Mulayoff R; Sde-Chen Y; Fraschini C; Bercoff J; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1810-1821. PubMed ID: 30010559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressed Fourier-Domain Convolutional Beamforming for Sub-Nyquist Ultrasound Imaging.
    Mamistvalov A; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):489-499. PubMed ID: 34699355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Images.
    Mamistvalov A; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3484-3496. PubMed ID: 34185640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A measurement-domain adaptive beamforming approach for ultrasound instrument based on distributed compressed sensing: Initial development.
    Zhang Q; Li B; Shen M
    Ultrasonics; 2013 Jan; 53(1):255-64. PubMed ID: 22867991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-beamformed RF signal reconstruction in medical ultrasound using compressive sensing.
    Liebgott H; Prost R; Friboulet D
    Ultrasonics; 2013 Feb; 53(2):525-33. PubMed ID: 23089222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of synthetic aperture architectures for miniaturised ultrasound imaging front-ends.
    Peyton G; Boutelle MG; Drakakis EM
    Biomed Eng Online; 2018 Jun; 17(1):83. PubMed ID: 29914479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandpass sampling of high-frequency tissue motion.
    Eskandari H; Goksel O; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1332-43. PubMed ID: 21768018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive field-of-view imaging for efficient receive beamforming in medical ultrasound imaging systems.
    Agarwal A; Yoo YM; Schneider FK; Kim Y
    Ultrasonics; 2008 Sep; 48(5):384-93. PubMed ID: 18372001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging.
    Åsen JP; Buskenes JI; Colombo Nilsen CI; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):76-85. PubMed ID: 24402897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound phase rotation beamforming on multi-core DSP.
    Ma J; Karadayi K; Ali M; Kim Y
    Ultrasonics; 2014 Jan; 54(1):99-105. PubMed ID: 23706261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of subaperture beamforming on phase coherence imaging.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1779-90. PubMed ID: 25389157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VLSI circuits for adaptive digital beamforming in ultrasound imaging.
    Karaman M; Atalar A; Koymen H
    IEEE Trans Med Imaging; 1993; 12(4):711-20. PubMed ID: 18218466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefits of minimum-variance beamforming in medical ultrasound imaging.
    Synnevag JF; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1868-79. PubMed ID: 19811990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed sensing for high frame rate, high resolution and high contrast ultrasound imaging.
    Jing Liu ; Qiong He ; Jianwen Luo
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1552-5. PubMed ID: 26736568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavenumber Beamforming With Sub-Nyquist Sampling for Focus-Beam Ultrasound Imaging.
    Guo H; Freear S; Zhou GQ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Aug; 71(8):972-984. PubMed ID: 38787673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Compressed Sensing Strategy for Synthetic Transmit Aperture Ultrasound Imaging.
    Liu J; He Q; Luo J
    IEEE Trans Med Imaging; 2017 Apr; 36(4):878-891. PubMed ID: 28026758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Learning Based Adaptive Ultrasound Imaging From Sub-Nyquist Channel Data.
    Mamistvalov A; Amar A; Kessler N; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1638-1648. PubMed ID: 35312618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital phased array beamforming using single-bit delta-sigma conversion with non-uniform oversampling.
    Kozak M; Karaman M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):922-31. PubMed ID: 11477784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.