These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 2507342)
1. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Dean JB; Lawing WL; Millhorn DE Exp Brain Res; 1989; 76(3):656-61. PubMed ID: 2507342 [TBL] [Abstract][Full Text] [Related]
2. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Dean JB; Bayliss DA; Erickson JT; Lawing WL; Millhorn DE Neuroscience; 1990; 36(1):207-16. PubMed ID: 2120613 [TBL] [Abstract][Full Text] [Related]
3. Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata. Huang RQ; Erlichman JS; Dean JB Neuroscience; 1997 Sep; 80(1):41-57. PubMed ID: 9252219 [TBL] [Abstract][Full Text] [Related]
4. Response to CO2 of neurons in the rostral ventral medulla in vitro. Richerson GB J Neurophysiol; 1995 Mar; 73(3):933-44. PubMed ID: 7608778 [TBL] [Abstract][Full Text] [Related]
5. Hyperpolarization-activated inward currents contribute to spontaneous electrical activity and CO2/H+ sensitivity of cultivated neurons of fetal rat medulla. Wellner-Kienitz MC; Shams H Neuroscience; 1998 Nov; 87(1):109-21. PubMed ID: 9722145 [TBL] [Abstract][Full Text] [Related]
6. Normobaric hyperoxia (95% O₂) stimulates CO₂-sensitive and CO₂-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O₂. Matott MP; Ciarlone GE; Putnam RW; Dean JB Neuroscience; 2014 Jun; 270():98-122. PubMed ID: 24704511 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of apamin on neuronal excitability in the nucleus tractus solitarii of rats studied in vitro. Butcher JW; Kasparov S; Paton JF J Auton Nerv Syst; 1999 Sep; 77(2-3):90-7. PubMed ID: 10580291 [TBL] [Abstract][Full Text] [Related]
8. Contribution of Ca2+-activated K+ channels to central chemosensitivity in cultivated neurons of fetal rat medulla. Wellner-Kienitz MC; Shams H; Scheid P J Neurophysiol; 1998 Jun; 79(6):2885-94. PubMed ID: 9636094 [TBL] [Abstract][Full Text] [Related]
9. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Pineda J; Aghajanian GK Neuroscience; 1997 Apr; 77(3):723-43. PubMed ID: 9070748 [TBL] [Abstract][Full Text] [Related]
10. The ventrolateral medulla as a source of synaptic drive to rhythmically firing neurons in the cardiovascular nucleus tractus solitarius of the rat. Paton JF; Rogers WT; Schwaber JS Brain Res; 1991 Oct; 561(2):217-29. PubMed ID: 1686985 [TBL] [Abstract][Full Text] [Related]
11. Membrane and synaptic properties of nucleus tractus solitarius neurons projecting to the caudal ventrolateral medulla. Li DP; Yang Q Auton Neurosci; 2007 Oct; 136(1-2):69-81. PubMed ID: 17537680 [TBL] [Abstract][Full Text] [Related]
12. CO2-induced c-fos expression in medullary neurons during early development. Belegu R; Hadziefendić S; Dreshaj IA; Haxhiu MA; Martin RJ Respir Physiol; 1999 Sep; 117(1):13-28. PubMed ID: 10505476 [TBL] [Abstract][Full Text] [Related]
13. Repetitive firing properties of neurons in the ventral region of nucleus tractus solitarius. In vitro studies in adult and neonatal rat. Haddad GG; Getting PA J Neurophysiol; 1989 Dec; 62(6):1213-24. PubMed ID: 2600620 [TBL] [Abstract][Full Text] [Related]
14. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. Fu C; Xue J; Wang R; Chen J; Ma L; Liu Y; Wang X; Guo F; Zhang Y; Zhang X; Wang S J Physiol; 2017 Jul; 595(14):4973-4989. PubMed ID: 28488367 [TBL] [Abstract][Full Text] [Related]
15. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii. Tell F; Jean A J Neurophysiol; 1993 Dec; 70(6):2379-90. PubMed ID: 7509858 [TBL] [Abstract][Full Text] [Related]
16. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2). Wang W; Bradley SR; Richerson GB J Physiol; 2002 May; 540(Pt 3):951-70. PubMed ID: 11986382 [TBL] [Abstract][Full Text] [Related]
17. Histamine-induced prolonged depolarization in rat supraoptic neurons: G-protein-mediated, Ca(2+)-independent suppression of K+ leakage conductance. Li Z; Hatton GI Neuroscience; 1996 Jan; 70(1):145-58. PubMed ID: 8848119 [TBL] [Abstract][Full Text] [Related]
18. Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla. Ritucci NA; Dean JB; Putnam RW Am J Physiol; 1997 Jul; 273(1 Pt 2):R433-41. PubMed ID: 9249582 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Li Z; Ferguson AV Neuroscience; 1996 Mar; 71(1):133-45. PubMed ID: 8834397 [TBL] [Abstract][Full Text] [Related]
20. Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus. Qu L; McQueeney AJ; Barnes KL J Neurophysiol; 1996 Jun; 75(6):2220-8. PubMed ID: 8793736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]