These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25073623)

  • 1. Algorithms for quantitative quasi-static elasticity imaging using force data.
    Tyagi M; Goenezen S; Barbone PE; Oberai AA
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1421-36. PubMed ID: 25073623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the soft tissue ultrasound elastography using FEM based inversion approach.
    Eshaghinia SS; Taghvaeipour A; Aghdam MM; Rivaz H
    Proc Inst Mech Eng H; 2024 Mar; 238(3):271-287. PubMed ID: 38240143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear modulus decomposition algorithm in magnetic resonance elastography.
    Kwon OI; Park C; Nam HS; Woo EJ; Seo JK; Glaser KJ; Manduca A; Ehman RL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1526-33. PubMed ID: 19783495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indentation Measurements to Validate Dynamic Elasticity Imaging Methods.
    Altahhan KN; Wang Y; Sobh N; Insana MF
    Ultrason Imaging; 2016 Sep; 38(5):332-45. PubMed ID: 26376923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying hepatic shear modulus in vivo using acoustic radiation force.
    Palmeri ML; Wang MH; Dahl JJ; Frinkley KD; Nightingale KR
    Ultrasound Med Biol; 2008 Apr; 34(4):546-58. PubMed ID: 18222031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging.
    Pan X; Gao J; Shao J; Luo J; Bai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1132-5. PubMed ID: 24109892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.
    Hoerig C; Ghaboussi J; Insana MF
    IEEE Trans Med Imaging; 2019 May; 38(5):1150-1160. PubMed ID: 30403625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing the Spatial Distribution of the Relative Shear Modulus in Quasi-static Ultrasound Elastography: Plane Stress Analysis.
    Seppecher L; Bretin E; Millien P; Petrusca L; Brusseau E
    Ultrasound Med Biol; 2023 Mar; 49(3):710-722. PubMed ID: 36639283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial resolution in dynamic optical coherence elastography.
    Kirby MA; Zhou K; Pitre JJ; Gao L; Li D; Pelivanov I; Song S; Li C; Huang Z; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Sep; 24(9):1-16. PubMed ID: 31535538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards quantitative quasi-static ultrasound elastography using a reference layer for liver imaging application: A preliminary assessment.
    Selladurai S; Thittai AK
    Ultrasonics; 2019 Mar; 93():7-17. PubMed ID: 30384008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast imaging of cell elasticity with optical microelastography.
    Grasland-Mongrain P; Zorgani A; Nakagawa S; Bernard S; Paim LG; Fitzharris G; Catheline S; Cloutier G
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):861-866. PubMed ID: 29339488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based elastography: a survey of approaches to the inverse elasticity problem.
    Doyley MM
    Phys Med Biol; 2012 Feb; 57(3):R35-73. PubMed ID: 22222839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic nonlinearity imaging.
    Hall TJ; Oberait AA; Barbone PE; Sommer AM; Gokhale NH; Goenezent S; Jiang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1967-70. PubMed ID: 19964024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical model of neural tissue displacement during Lorentz effect imaging.
    Roth BJ; Basser PJ
    Magn Reson Med; 2009 Jan; 61(1):59-64. PubMed ID: 19097218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified error in constitutive equations (MECE) approach for ultrasound elastography.
    Ghosh S; Zou Z; Babaniyi O; Aquino W; Diaz MI; Bayat M; Fatemi M
    J Acoust Soc Am; 2017 Oct; 142(4):2084. PubMed ID: 29092577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing stiffness of human prostates using acoustic radiation force.
    Zhai L; Madden J; Foo WC; Mouraviev V; Polascik TJ; Palmeri ML; Nightingale KR
    Ultrason Imaging; 2010 Oct; 32(4):201-13. PubMed ID: 21213566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.