These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2507395)
21. Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Charron MJ; Dubin RA; Michels CA Mol Cell Biol; 1986 Nov; 6(11):3891-9. PubMed ID: 3025617 [TBL] [Abstract][Full Text] [Related]
22. Identification of a second trans-acting gene controlling maltose fermentation in Saccharomyces carlsbergensis. Dubin RA; Perkins EL; Needleman RB; Michels CA Mol Cell Biol; 1986 Aug; 6(8):2757-65. PubMed ID: 3537726 [TBL] [Abstract][Full Text] [Related]
23. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Jauniaux JC; Grenson M Eur J Biochem; 1990 May; 190(1):39-44. PubMed ID: 2194797 [TBL] [Abstract][Full Text] [Related]
24. Trehalose and maltose metabolism in yeast transformed by a MAL4 regulatory gene cloned from a constitutive donor strain. de Oliveira DE; Arrese M; Kidane G; Panek AD; Mattoon JR Curr Genet; 1986; 11(2):97-106. PubMed ID: 3329048 [TBL] [Abstract][Full Text] [Related]
25. Control of maltase synthesis in yeast. Needleman R Mol Microbiol; 1991 Sep; 5(9):2079-84. PubMed ID: 1766381 [TBL] [Abstract][Full Text] [Related]
26. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. Tschopp JF; Emr SD; Field C; Schekman R J Bacteriol; 1986 Apr; 166(1):313-8. PubMed ID: 3082856 [TBL] [Abstract][Full Text] [Related]
27. Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. Leong-Morgenthaler P; Zwahlen MC; Hottinger H J Bacteriol; 1991 Mar; 173(6):1951-7. PubMed ID: 1705929 [TBL] [Abstract][Full Text] [Related]
28. Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli. Pi J; Wookey PJ; Pittard AJ J Bacteriol; 1991 Jun; 173(12):3622-9. PubMed ID: 1711024 [TBL] [Abstract][Full Text] [Related]
29. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Myers AM; Tzagoloff A; Kinney DM; Lusty CJ Gene; 1986; 45(3):299-310. PubMed ID: 3026915 [TBL] [Abstract][Full Text] [Related]
30. Molecular analysis of the amy gene locus of Thermoanaerobacterium thermosulfurigenes EM1 encoding starch-degrading enzymes and a binding protein-dependent maltose transport system. Sahm K; Matuschek M; Müller H; Mitchell WJ; Bahl H J Bacteriol; 1996 Feb; 178(4):1039-46. PubMed ID: 8576036 [TBL] [Abstract][Full Text] [Related]
31. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. Poolman B; Royer TJ; Mainzer SE; Schmidt BF J Bacteriol; 1989 Jan; 171(1):244-53. PubMed ID: 2644191 [TBL] [Abstract][Full Text] [Related]
32. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon. Puyet A; Espinosa M J Mol Biol; 1993 Apr; 230(3):800-11. PubMed ID: 8478935 [TBL] [Abstract][Full Text] [Related]
33. The maltose permease encoded by the MAL61 gene of Saccharomyces cerevisiae exhibits both sequence and structural homology to other sugar transporters. Cheng Q; Michels CA Genetics; 1989 Nov; 123(3):477-84. PubMed ID: 2689282 [TBL] [Abstract][Full Text] [Related]
34. Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway. Wanke V; Vavassori M; Thevelein JM; Tortora P; Vanoni M FEBS Lett; 1997 Feb; 402(2-3):251-5. PubMed ID: 9037205 [TBL] [Abstract][Full Text] [Related]
35. Upstream regulatory regions controlling the expression of the yeast maltase gene. Hong SH; Marmur J Mol Cell Biol; 1987 Jul; 7(7):2477-83. PubMed ID: 3302677 [TBL] [Abstract][Full Text] [Related]
36. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. Manoil C; Bailey J J Mol Biol; 1997 Mar; 267(2):250-63. PubMed ID: 9096223 [TBL] [Abstract][Full Text] [Related]
37. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene. Dattananda CS; Rajkumari K; Gowrishankar J J Bacteriol; 1991 Dec; 173(23):7481-90. PubMed ID: 1938945 [TBL] [Abstract][Full Text] [Related]
38. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. Ghim SY; Neuhard J J Bacteriol; 1994 Jun; 176(12):3698-707. PubMed ID: 8206848 [TBL] [Abstract][Full Text] [Related]
39. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
40. Cloning and sequencing of the Saccharomyces cerevisiae gene LYP1 coding for a lysine-specific permease. Sychrova H; Chevallier MR Yeast; 1993 Jul; 9(7):771-82. PubMed ID: 8368011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]