BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25074014)

  • 1. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins.
    Goldfeder M; Kanteev M; Isaschar-Ovdat S; Adir N; Fishman A
    Nat Commun; 2014 Jul; 5():4505. PubMed ID: 25074014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function correlations in tyrosinases.
    Kanteev M; Goldfeder M; Fishman A
    Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide helps in the identification of monophenols as possible substrates of tyrosinase.
    García-Molina Mo; Muñoz-Muñoz JL; Berna J; Rodríguez-López JN; Varón R; García-Cánovas F
    Biosci Biotechnol Biochem; 2013; 77(12):2383-8. PubMed ID: 24317051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A
    J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT; Rozeboom HJ; Weijn A; Mes JJ; Fusetti F; Wichers HJ; Dijkstra BW
    Biochemistry; 2011 Jun; 50(24):5477-86. PubMed ID: 21598903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):491-499. PubMed ID: 28777094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities.
    Noh H; Lee SJ; Jo HJ; Choi HW; Hong S; Kong KH
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):726-732. PubMed ID: 32180482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate.
    Goldfeder M; Egozy M; Shuster Ben-Yosef V; Adir N; Fishman A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1953-61. PubMed ID: 22539021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.
    Do H; Kang E; Yang B; Cha HJ; Choi YS
    Sci Rep; 2017 Dec; 7(1):17267. PubMed ID: 29222480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M
    J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation.
    Lee SH; Baek K; Lee JE; Kim BG
    Biotechnol Bioeng; 2016 Apr; 113(4):735-43. PubMed ID: 26461518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similar enzyme activation and catalysis in hemocyanins and tyrosinases.
    Decker H; Schweikardt T; Nillius D; Salzbrunn U; Jaenicke E; Tuczek F
    Gene; 2007 Aug; 398(1-2):183-91. PubMed ID: 17566671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of "Substrate-Guiding Residues" for Enzymatic Specificity.
    Bijelic A; Pretzler M; Molitor C; Zekiri F; Rompel A
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14677-80. PubMed ID: 26473311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.