These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25074148)

  • 1. Characterisation of a dedicated mechanical model for red blood cells: numerical simulations of optical tweezers experiment.
    Sigüenza J; Mendez S; Nicoud F
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():28-9. PubMed ID: 25074148
    [No Abstract]   [Full Text] [Related]  

  • 2. How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?
    Sigüenza J; Mendez S; Nicoud F
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1645-1657. PubMed ID: 28470421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiscale model for red blood cell mechanics.
    Hartmann D
    Biomech Model Mechanobiol; 2010 Feb; 9(1):1-17. PubMed ID: 19440743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J; Zhu L; Zhang F; Dong M; Qu X
    Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic real time evaluation of red blood cell elasticity by optical tweezers.
    Moura DS; Silva DC; Williams AJ; Bezerra MA; Fontes A; de Araujo RE
    Rev Sci Instrum; 2015 May; 86(5):053702. PubMed ID: 26026527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do red blood cells have asymmetric shapes even in a symmetric flow?
    Kaoui B; Biros G; Misbah C
    Phys Rev Lett; 2009 Oct; 103(18):188101. PubMed ID: 19905834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell simulation using a coupled shell-fluid analysis purely based on the SPH method.
    Soleimani M; Sahraee S; Wriggers P
    Biomech Model Mechanobiol; 2019 Apr; 18(2):347-359. PubMed ID: 30377857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy.
    Mohanty K; Mohanty S; Monajembashi S; Greulich KO
    J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape memory of human red blood cells.
    Fischer TM
    Biophys J; 2004 May; 86(5):3304-13. PubMed ID: 15111443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S
    J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping red blood cells in living animals using optical tweezers.
    Zhong MC; Wei XB; Zhou JH; Wang ZQ; Li YM
    Nat Commun; 2013; 4():1768. PubMed ID: 23612309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.
    Li C; Liu YP; Liu KK; Lai AK
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):80-90. PubMed ID: 18334458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell elongation via intrinsic antipodal stretching forces.
    Sawetzki T; Eggleton CD; Marr DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061901. PubMed ID: 23367970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis.
    Chen YQ; Chen CW; Ni YL; Huang YS; Lin O; Chien S; Sung LA; Chiou A
    J Biophotonics; 2014 Aug; 7(8):647-55. PubMed ID: 23963649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium fluctuations of mechanically stretched single red blood cells detected by optical tweezers.
    Wojdyla M; Raj S; Petrov D
    Eur Biophys J; 2013 Jul; 42(7):539-47. PubMed ID: 23624638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.