These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25074188)

  • 1. Benefits of functional calibration for estimating elbow joint angles using magneto-inertial sensors: preliminary results.
    Bouvier B; Savescu A; Duprey S; Dumas R
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():108-9. PubMed ID: 25074188
    [No Abstract]   [Full Text] [Related]  

  • 2. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study.
    Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A
    J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel functional calibration method for real-time elbow joint angles estimation with magnetic-inertial sensors.
    Ligorio G; Zanotto D; Sabatini AM; Agrawal SK
    J Biomech; 2017 Mar; 54():106-110. PubMed ID: 28236444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional estimation of bony segment lengths using magneto-inertial sensing: Application to the humerus.
    Crabolu M; Pani D; Raffo L; Conti M; Cereatti A
    PLoS One; 2018; 13(9):e0203861. PubMed ID: 30208109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification.
    Picerno P; Caliandro P; Iacovelli C; Simbolotti C; Crabolu M; Pani D; Vannozzi G; Reale G; Rossini PM; Padua L; Cereatti A
    Sci Rep; 2019 Oct; 9(1):14449. PubMed ID: 31594964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of using inertial sensors to assess human movement.
    Saber-Sheikh K; Bryant EC; Glazzard C; Hamel A; Lee RY
    Man Ther; 2010 Feb; 15(1):122-5. PubMed ID: 19632882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations.
    Bouvier B; Duprey S; Claudon L; Dumas R; Savescu A
    Sensors (Basel); 2015 Jul; 15(8):18813-33. PubMed ID: 26263993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H; Stone T; Hu H; Harris N
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alignment procedure for ambulatory measurements of lower limb kinematic using magneto-inertial sensors.
    Taffoni F; Piervirgili G; Formica D; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1197-200. PubMed ID: 22254530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment-Free, Self-Calibrating Elbow Angles Measurement Using Inertial Sensors.
    Muller P; Begin MA; Schauer T; Seel T
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):312-319. PubMed ID: 28113331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
    Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R
    Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental protocol for the definition of upper limb anatomical frames on children using magneto-inertial sensors.
    Ricci L; Formica D; Tamilia E; Taffoni F; Sparaci L; Capirci O; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4903-6. PubMed ID: 24110834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial sensors as measurement tools of elbow range of motion in gerontology.
    Sacco G; Turpin JM; Marteu A; Sakarovitch C; Teboul B; Boscher L; Brocker P; Robert P; Guerin O
    Clin Interv Aging; 2015; 10():491-7. PubMed ID: 25759568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint.
    TarniŢă D; TarniŢă DN
    Rom J Morphol Embryol; 2016; 57(1):145-51. PubMed ID: 27151700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An instrumented glove for monitoring hand function.
    Mohan A; Tharion G; Kumar RK; Devasahayam SR
    Rev Sci Instrum; 2018 Oct; 89(10):105001. PubMed ID: 30399736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field.
    Hou J; Sun Y; Sun L; Pan B; Huang Z; Wu J; Zhang Z
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements.
    Shyr TW; Shie JW; Jiang CH; Li JJ
    Sensors (Basel); 2014 Feb; 14(3):4050-9. PubMed ID: 24577526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the telemedicine-based goniometry for measuring elbow range of motion.
    Chanlalit C; Kongmalai P
    J Med Assoc Thai; 2012 Dec; 95 Suppl 12():S113-7. PubMed ID: 23513475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.