These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25074419)

  • 1. Enhancement of non-heme iron absorption by anchovy (Engraulis japonicus) muscle protein hydrolysate involves a nanoparticle-mediated mechanism.
    Wu H; Zhu S; Zeng M; Liu Z; Dong S; Zhao Y; Huang H; Lo YM
    J Agric Food Chem; 2014 Aug; 62(34):8632-9. PubMed ID: 25074419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Key Factors of Anchovy (Engraulis japonicus) Meat in the Nanoparticle-Mediated Enhancement of Non-Heme Iron Absorption.
    Zou Y; Zhao L; Feng G; Miao Y; Wu H; Zeng M
    J Agric Food Chem; 2017 Dec; 65(51):11212-11219. PubMed ID: 29199426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of ferric oxyhydroxide nanoparticles mediated by peptides in anchovy (Engraulis japonicus) muscle protein hydrolysate.
    Wu H; Liu Z; Dong S; Zhao Y; Huang H; Zeng M
    J Agric Food Chem; 2013 Jan; 61(1):219-24. PubMed ID: 23244619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization and delivery of bioavailable nanosized iron by fish sperm DNA.
    Li S; Zhang J; Miao Y; Guo W; Feng G; Feng Y; Zhang C; Wu H; Zeng M
    Food Funct; 2020 Jul; 11(7):6240-6250. PubMed ID: 32596698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Heme Iron Loading Capacities of Anchovy (Engraulis japonicus) Meat Fractions under Simulated Gastrointestinal Digestion.
    Zhao L; Wu H; Zeng M; Huang H
    J Agric Food Chem; 2017 Jan; 65(1):174-181. PubMed ID: 27966354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability of trivalent iron in oral iron preparations. Therapeutic efficacy and iron absorption from simple ferric compounds and high- or low-molecular weight ferric hydroxide-carbohydrate complexes.
    Heinrich HC
    Arzneimittelforschung; 1975 Mar; 25(3):420-6. PubMed ID: 1174047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability to anemic rats of iron from fresh, cooked or nitrosylated hemoglobin and myoglobin.
    Park YW; Mahoney AW; Cornforth DP; Collinge SK; Hendricks DG
    J Nutr; 1983 Mar; 113(3):680-7. PubMed ID: 6827383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron oxide/hydroxide nanoparticles with negatively charged shells show increased uptake in Caco-2 cells.
    Jahn MR; Nawroth T; Fütterer S; Wolfrum U; Kolb U; Langguth P
    Mol Pharm; 2012 Jun; 9(6):1628-37. PubMed ID: 22587679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pea Ferritin Stability under Gastric pH Conditions Determines the Mechanism of Iron Uptake in Caco-2 Cells.
    Perfecto A; Rodriguez-Ramiro I; Rodriguez-Celma J; Sharp P; Balk J; Fairweather-Tait S
    J Nutr; 2018 Aug; 148(8):1229-1235. PubMed ID: 29939292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citric acid mediates the iron absorption from low molecular weight human milk fractions.
    Palika R; Mashurabad PC; Kilari S; Kasula S; Nair KM; Raghu P
    J Agric Food Chem; 2013 Nov; 61(46):11151-7. PubMed ID: 24160751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of iron bioavailability from bonito dark muscle using anemic rats.
    Matsumoto J; Mori N; Doi M; Kishida T; Ebihara K
    J Agric Food Chem; 2003 Jul; 51(15):4478-82. PubMed ID: 12848529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells.
    Yeung CK; Glahn RP; Miller DD
    J Agric Food Chem; 2005 Jan; 53(1):132-6. PubMed ID: 15631519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: kinetic analyses and possible mechanism.
    Iyengar V; Pullakhandam R; Nair KM
    Indian J Biochem Biophys; 2009 Aug; 46(4):299-306. PubMed ID: 19788062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron absorption from concentrated hemoglobin hydrolysate by rat.
    Vaghefi N; Nedjaoum F; Guillochon D; Bureau F; Arhan P; Bouglé D
    J Nutr Biochem; 2005 Jun; 16(6):347-52. PubMed ID: 15936646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of different proteases on iron absorption property of egg white hydrolysates.
    Horimoto Y; Lim LT
    Food Res Int; 2017 May; 95():108-116. PubMed ID: 28395818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells.
    Perfecto A; Elgy C; Valsami-Jones E; Sharp P; Hilty F; Fairweather-Tait S
    Nutrients; 2017 Apr; 9(4):. PubMed ID: 28375175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, functional properties and iron bioavailability of Pneumatophorus japonicus myoglobin and its glycosylation products.
    Tan B; Sun B; Sun N; Li C; Zhang J; Yang W
    Int J Biol Macromol; 2021 Mar; 173():524-531. PubMed ID: 33493563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of calcium on non-heme iron uptake, efflux, and transport in intestinal-like epithelial cells (Caco-2 cells).
    Gaitán DA; Flores S; Pizarro F; Olivares M; Suazo M; Arredondo M
    Biol Trace Elem Res; 2012 Mar; 145(3):300-3. PubMed ID: 21947858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthophosphate affects iron(III) bioavailability via a mechanism involving stabilization and delivery of ferric hydroxide-phosphate nanoparticles.
    Wu H; Guo T; Li S; Zhao Y; Zeng M
    Food Chem; 2021 Jun; 347():129081. PubMed ID: 33484956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microalgae as iron supplements on iron-deficiency anemia in rats.
    Gao F; Guo W; Zeng M; Feng Y; Feng G
    Food Funct; 2019 Feb; 10(2):723-732. PubMed ID: 30664135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.