BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25074649)

  • 21. A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces.
    Shojaei I; Arjmand N; Meakin JR; Bazrgari B
    J Biomech; 2018 Mar; 70():82-87. PubMed ID: 29029957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of body weight on spinal loads in various activities: a personalized biomechanical modeling approach.
    Hajihosseinali M; Arjmand N; Shirazi-Adl A
    J Biomech; 2015 Jan; 48(2):276-82. PubMed ID: 25498363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ISSLS prize winner: A novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements.
    Wilke HJ; Rohlmann A; Neller S; Graichen F; Claes L; Bergmann G
    Spine (Phila Pa 1976); 2003 Dec; 28(23):2585-93. PubMed ID: 14652475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics.
    Shojaei I; Arjmand N; Bazrgari B
    Int J Numer Method Biomed Eng; 2015 Dec; 31(12):. PubMed ID: 26037214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities.
    Heidari E; Arjmand N; Kahrizi S
    J Biomech; 2022 Nov; 144():111344. PubMed ID: 36270086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trunk strength, muscle activity and spinal loads in maximum isometric flexion and extension exertions: a combined in vivo-computational study.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A; Larivière C
    J Biomech; 2013 Sep; 46(13):2228-35. PubMed ID: 23871523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biologically-assisted curved muscle model of the lumbar spine: Model validation.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():153-159. PubMed ID: 27484459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques.
    Eskandari AH; Arjmand N; Shirazi-Adl A; Farahmand F
    J Biomech; 2019 Feb; 84():161-171. PubMed ID: 30638978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living.
    Ignasiak D; Rüeger A; Sperr R; Ferguson SJ
    J Biomech; 2018 Mar; 70():175-184. PubMed ID: 29248192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks.
    Rajaee MA; Arjmand N; Shirazi-Adl A
    J Biomech; 2021 Apr; 119():110331. PubMed ID: 33631665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trunk Hybrid Passive-Active Musculoskeletal Modeling to Determine the Detailed T12-S1 Response Under In Vivo Loads.
    Khoddam-Khorasani P; Arjmand N; Shirazi-Adl A
    Ann Biomed Eng; 2018 Nov; 46(11):1830-1843. PubMed ID: 29946972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies.
    El-Rich M; Shirazi-Adl A; Arjmand N
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2633-42. PubMed ID: 15564912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces.
    Han KS; Zander T; Taylor WR; Rohlmann A
    Med Eng Phys; 2012 Jul; 34(6):709-16. PubMed ID: 21978915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trunk muscle contributions of to L4-5 joint rotational stiffness following sudden trunk lateral bend perturbations.
    Cort JA; Dickey JP; Potvin JR
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1334-42. PubMed ID: 24148963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels.
    Ignasiak D; Ferguson SJ; Arjmand N
    J Biomech; 2016 Sep; 49(13):3074-3078. PubMed ID: 27515441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion.
    Potvin JR; McGill SM; Norman RW
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1099-107. PubMed ID: 1948399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation.
    Jamshidnejad S; Arjmand N
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1036-42. PubMed ID: 26432416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of motion segment simulation and joint positioning on spinal loads in trunk musculoskeletal models.
    Ghezelbash F; Eskandari AH; Shirazi-Adl A; Arjmand N; El-Ouaaid Z; Plamondon A
    J Biomech; 2018 Mar; 70():149-156. PubMed ID: 28797595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.
    Actis JA; Honegger JD; Gates DH; Petrella AJ; Nolasco LA; Silverman AK
    J Biomech; 2018 Feb; 68():107-114. PubMed ID: 29310946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.