These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25074836)

  • 1. Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W.
    Chawachart N; Anbarasan S; Turunen S; Li H; Khanongnuch C; Hummel M; Sixta H; Granström T; Lumyong S; Turunen O
    Extremophiles; 2014 Nov; 18(6):1023-34. PubMed ID: 25074836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High stability and low competitive inhibition of thermophilic Thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids.
    Anbarasan S; Wahlström R; Hummel M; Ojamo H; Sixta H; Turunen O
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1487-1498. PubMed ID: 27770179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids.
    Yu T; Anbarasan S; Wang Y; Telli K; Aslan AS; Su Z; Zhou Y; Zhang L; Iivonen P; Havukainen S; Mentunen T; Hummel M; Sixta H; Binay B; Turunen O; Xiong H
    Extremophiles; 2016 Jul; 20(4):515-24. PubMed ID: 27240671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu.
    Ping L; Wang M; Yuan X; Cui F; Huang D; Sun W; Zou B; Huo S; Wang H
    Int J Biol Macromol; 2018 Apr; 109():1270-1279. PubMed ID: 29175163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR; Hossain M; Kapoor BS; Dasgupta S; B VPR; Aikat K; Mukhopadhyay SS
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756.
    de Souza AR; de Araújo GC; Zanphorlin LM; Ruller R; Franco FC; Torres FA; Mertens JA; Bowman MJ; Gomes E; Da Silva R
    Int J Biol Macromol; 2016 Dec; 93(Pt A):20-26. PubMed ID: 27554938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-structured amino-acid impact on GH11 differs from GH10 xylanase.
    Liu L; Sun X; Yan P; Wang L; Chen H
    PLoS One; 2012; 7(9):e45762. PubMed ID: 23029229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, dynamics, and activity of xylanase solvated in binary mixtures of ionic liquid and water.
    Jaeger VW; Pfaendtner J
    ACS Chem Biol; 2013; 8(6):1179-86. PubMed ID: 23517495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24.
    Kim DY; Lee SH; Lee MJ; Cho HY; Lee JS; Rhee YH; Shin DH; Son KH; Park HY
    Int J Biol Macromol; 2018 Jan; 106():620-628. PubMed ID: 28813686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.
    Tajwar R; Shahid S; Zafar R; Akhtar MW
    Enzyme Microb Technol; 2017 Nov; 106():75-82. PubMed ID: 28859813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System.
    Fredriksen L; Stokke R; Jensen MS; Westereng B; Jameson JK; Steen IH; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.
    Li H; Turunen O
    Biotechnol Appl Biochem; 2015; 62(4):433-40. PubMed ID: 25196426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance.
    Zheng F; Huang J; Liu X; Hu H; Long L; Chen K; Ding S
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3555-65. PubMed ID: 26621803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus.
    Brienzo M; Carvalho W; Milagres AM
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1195-205. PubMed ID: 20066571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904.
    Li Q; Sun B; Li X; Xiong K; Xu Y; Yang R; Hou J; Teng C
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1447-1455. PubMed ID: 29030195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis.
    Zhang J; Tuomainen P; Siika-Aho M; Viikari L
    Bioresour Technol; 2011 Oct; 102(19):9090-5. PubMed ID: 21767947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from
    Yang J; Han Z
    Biomolecules; 2018 Jul; 8(3):. PubMed ID: 30061529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme activity in dialkyl phosphate ionic liquids.
    Thomas MF; Li LL; Handley-Pendleton JM; van der Lelie D; Dunn JJ; Wishart JF
    Bioresour Technol; 2011 Dec; 102(24):11200-3. PubMed ID: 22001053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.