These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 25074911)
1. Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity. Xu L; Zhang L; Chong J; Xu J; Huang X; Wang D Proc Natl Acad Sci U S A; 2014 Aug; 111(32):E3269-76. PubMed ID: 25074911 [TBL] [Abstract][Full Text] [Related]
2. Impact of template backbone heterogeneity on RNA polymerase II transcription. Xu L; Wang W; Zhang L; Chong J; Huang X; Wang D Nucleic Acids Res; 2015 Feb; 43(4):2232-41. PubMed ID: 25662224 [TBL] [Abstract][Full Text] [Related]
3. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. Kellinger MW; Ulrich S; Chong J; Kool ET; Wang D J Am Chem Soc; 2012 May; 134(19):8231-40. PubMed ID: 22509745 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Wang D; Bushnell DA; Westover KD; Kaplan CD; Kornberg RD Cell; 2006 Dec; 127(5):941-54. PubMed ID: 17129781 [TBL] [Abstract][Full Text] [Related]
5. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues. Xu L; Butler KV; Chong J; Wengel J; Kool ET; Wang D Nucleic Acids Res; 2014 May; 42(9):5863-70. PubMed ID: 24692664 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis of RNA-dependent RNA polymerase II activity. Lehmann E; Brueckner F; Cramer P Nature; 2007 Nov; 450(7168):445-9. PubMed ID: 18004386 [TBL] [Abstract][Full Text] [Related]
7. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149 [TBL] [Abstract][Full Text] [Related]
8. A chemical perspective on transcriptional fidelity: dominant contributions of sugar integrity revealed by unlocked nucleic acids. Xu L; Plouffe SW; Chong J; Wengel J; Wang D Angew Chem Int Ed Engl; 2013 Nov; 52(47):12341-5. PubMed ID: 24167045 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. Xu L; Da L; Plouffe SW; Chong J; Kool E; Wang D DNA Repair (Amst); 2014 Jul; 19():71-83. PubMed ID: 24767259 [TBL] [Abstract][Full Text] [Related]
10. Epigenetic DNA Modification N Wang W; Xu L; Hu L; Chong J; He C; Wang D J Am Chem Soc; 2017 Oct; 139(41):14436-14442. PubMed ID: 28933854 [TBL] [Abstract][Full Text] [Related]
11. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Kireeva ML; Nedialkov YA; Cremona GH; Purtov YA; Lubkowska L; Malagon F; Burton ZF; Strathern JN; Kashlev M Mol Cell; 2008 Jun; 30(5):557-66. PubMed ID: 18538654 [TBL] [Abstract][Full Text] [Related]
12. RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif. Xu L; Wang W; Gotte D; Yang F; Hare AA; Welch TR; Li BC; Shin JH; Chong J; Strathern JN; Dervan PB; Wang D Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12426-12431. PubMed ID: 27791148 [TBL] [Abstract][Full Text] [Related]
13. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Kaplan CD; Larsson KM; Kornberg RD Mol Cell; 2008 Jun; 30(5):547-56. PubMed ID: 18538653 [TBL] [Abstract][Full Text] [Related]
14. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Sainsbury S; Niesser J; Cramer P Nature; 2013 Jan; 493(7432):437-40. PubMed ID: 23151482 [TBL] [Abstract][Full Text] [Related]
15. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. Kaplan CD; Jin H; Zhang IL; Belyanin A PLoS Genet; 2012; 8(4):e1002627. PubMed ID: 22511879 [TBL] [Abstract][Full Text] [Related]
16. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. Konovalov KA; Pardo-Avila F; Tse CKM; Oh J; Wang D; Huang X J Biol Chem; 2019 Mar; 294(13):4924-4933. PubMed ID: 30718278 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Xu L; Wang W; Wu J; Shin JH; Wang P; Unarta IC; Chong J; Wang Y; Wang D Proc Natl Acad Sci U S A; 2017 Aug; 114(34):E7082-E7091. PubMed ID: 28784758 [TBL] [Abstract][Full Text] [Related]
18. Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Goetze H; Wittner M; Hamperl S; Hondele M; Merz K; Stoeckl U; Griesenbeck J Mol Cell Biol; 2010 Apr; 30(8):2028-45. PubMed ID: 20154141 [TBL] [Abstract][Full Text] [Related]
19. Defining the divergent enzymatic properties of RNA polymerases I and II. Jacobs RQ; Ingram ZM; Lucius AL; Schneider DA J Biol Chem; 2021; 296():100051. PubMed ID: 33168625 [TBL] [Abstract][Full Text] [Related]
20. 2',5'-linked DNA is a template for polymerase-directed DNA synthesis. Sinha S; Kim PH; Switzer C J Am Chem Soc; 2004 Jan; 126(1):40-1. PubMed ID: 14709049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]