These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 2507499)

  • 1. Maturational and anesthetic effects on apneic thresholds in lambs.
    Kurth CD; Hutchison AA; Caton DC; Davenport PW
    J Appl Physiol (1985); 1989 Aug; 67(2):643-7. PubMed ID: 2507499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation of steady-state CO2 sensitivity in vagotomized anesthetized lambs.
    Jansen AH; Ioffe S; Chernick V
    J Appl Physiol (1985); 1992 Apr; 72(4):1255-60. PubMed ID: 1592712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-dependent effects of halothane on the carbon dioxide responses of expiratory and inspiratory bulbospinal neurons and the phrenic nerve activities in dogs.
    Stuth EA; Tonkovic-Capin M; Kampine JP; Bajic J; Zuperku EJ
    Anesthesiology; 1994 Dec; 81(6):1470-83. PubMed ID: 7992917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereotyped phrenic response to laryngeal afferent volleys: the mechanism and anesthetic sensitivity.
    Sakai Y
    Tohoku J Exp Med; 1988 Dec; 156 Suppl():33-41. PubMed ID: 3269053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced respiratory neural activity elicits a long-lasting decrease in the CO
    Baertsch NA; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):235-242. PubMed ID: 27474512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolonged central respiratory inhibition following reflex-induced apnea.
    Lawson EE
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Apr; 50(4):874-9. PubMed ID: 7263371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of central chemical drive on poststimulatory respiratory depression of laryngeal origin in the adult cat.
    Bongianni F; Fontana GA; Mutolo D; Pantaleo T
    Brain Res Bull; 1996; 39(5):267-73. PubMed ID: 8705313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of excitatory and inhibitory respiratory afterdischarge mechanisms in piglets.
    Lawson EE; Long WA
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Oct; 55(4):1299-304. PubMed ID: 6629964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laryngeal chemosensitivity: a possible mechanism for sudden infant death.
    Downing SE; Lee JC
    Pediatrics; 1975 May; 55(5):640-9. PubMed ID: 236536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel inhibitor of the Na+/H+ exchanger type 3 activates the central respiratory CO2 response and lowers the apneic threshold.
    Kiwull-Schöne H; Wiemann M; Frede S; Bingmann D; Wirth KJ; Heinelt U; Lang HJ; Kiwull P
    Am J Respir Crit Care Med; 2001 Oct; 164(7):1303-11. PubMed ID: 11673226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery from central apnea: effect of stimulus duration and end-tidal CO2 partial pressure.
    Lawson EE
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jul; 53(1):105-9. PubMed ID: 6811520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naloxone attenuates poststimulatory respiratory depression of laryngeal origin in the adult cat.
    Mutolo D; Bongianni F; Corda M; Fontana GA; Pantaleo T
    Am J Physiol; 1995 Jul; 269(1 Pt 2):R113-23. PubMed ID: 7631883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of halothane and isoflurane in the upper airway of dogs during development.
    Sant'Ambrogio FB; Anderson JW; Nishino T; Sant'Ambrogio G
    Respir Physiol; 1993 Mar; 91(2-3):237-46. PubMed ID: 8469847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment of respiratory rhythm to respiratory oscillations of arterial PCO2 in vagotomized dogs.
    Takahashi E; Tejima K; Yamakoshi K
    J Appl Physiol (1985); 1992 Sep; 73(3):1052-7. PubMed ID: 1400017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the CO2 apneic threshold in newborn infants: possible relevance for periodic breathing and apnea.
    Khan A; Qurashi M; Kwiatkowski K; Cates D; Rigatto H
    J Appl Physiol (1985); 2005 Apr; 98(4):1171-6. PubMed ID: 15772056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central GABAergic mechanisms are involved in apnea induced by SLN stimulation in piglets.
    Abu-Shaweesh JM; Dreshaj IA; Haxhiu MA; Martin RJ
    J Appl Physiol (1985); 2001 Apr; 90(4):1570-6. PubMed ID: 11247962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic interaction of laryngeal and central chemoreceptor respiratory reflexes.
    Van Vliet BN; Uenishi M
    J Appl Physiol (1985); 1992 Feb; 72(2):643-9. PubMed ID: 1559943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory neuronal activity during apnea and poststimulatory effects of laryngeal origin in the cat.
    Bongianni F; Mutolo D; Carfì M; Fontana GA; Pantaleo T
    J Appl Physiol (1985); 2000 Sep; 89(3):917-25. PubMed ID: 10956334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separate effects of halothane and carbon dioxide on respiratory duration in vagotomized cats.
    Nishino T; Honda Y; Yonezawa T
    Br J Anaesth; 1983 Jul; 55(7):647-54. PubMed ID: 6409136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of central adenosine A(2A) receptors enhances superior laryngeal nerve stimulation-induced apnea in piglets via a GABAergic pathway.
    Abu-Shaweesh JM
    J Appl Physiol (1985); 2007 Oct; 103(4):1205-11. PubMed ID: 17656623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.