BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25075034)

  • 1. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.
    Bajgar R; Kolarova H; Bolek L; Binder S; Pizova K; Hanakova A
    Anticancer Res; 2014 Aug; 34(8):4095-9. PubMed ID: 25075034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic properties of ZnTPPS(4), ClAlPcS(2) and ALA in human melanoma G361 cells.
    Krestyn E; Kolarova H; Bajgar R; Tomankova K
    Toxicol In Vitro; 2010 Feb; 24(1):286-91. PubMed ID: 19720133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of photodynamic, sonodynamic and antioxidative influence on HeLa cell line.
    Tomankova K; Kolarova H; Vachutka J; Zapletalova J; Hanakova A; Kaplova E
    Indian J Biochem Biophys; 2014 Feb; 51(1):19-28. PubMed ID: 24791413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of zinc porphyrin and zinc phthalocyanine derivatives in photodynamic anticancer therapy under different partial pressures of oxygen in vitro.
    Pola M; Kolarova H; Ruzicka J; Zholobenko A; Modriansky M; Mosinger J; Bajgar R
    Invest New Drugs; 2021 Feb; 39(1):89-97. PubMed ID: 32833137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines.
    Kolarova H; Tomankova K; Bajgar R; Kolar P; Kubinek R
    Ultrasound Med Biol; 2009 Aug; 35(8):1397-404. PubMed ID: 19515482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-MYC and C-FOS expression changes and cellular aspects of the photodynamic reaction with photosensitizers TMPyP and ClAlPcS2.
    Pizova K; Bajgar R; Fillerova R; Kriegova E; Cenklova V; Langova K; Konecny P; Kolarova H
    J Photochem Photobiol B; 2015 Jan; 142():186-96. PubMed ID: 25545333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine.
    Kolarova H; Nevrelova P; Bajgar R; Jirova D; Kejlova K; Strnad M
    Toxicol In Vitro; 2007 Mar; 21(2):249-53. PubMed ID: 17092686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototoxic effect of photodynamic therapy on lung cancer cells grown as a monolayer and three dimensional multicellular spheroids.
    Manoto SL; Houreld NN; Abrahamse H
    Lasers Surg Med; 2013 Mar; 45(3):186-94. PubMed ID: 23460580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodynamic effects of ZnPcS(4)-BSA in human retinal pigment epithelium cells.
    Huang Y; Xu G; Peng Y; Chen S; Wu Y
    J Ocul Pharmacol Ther; 2009 Jun; 25(3):231-8. PubMed ID: 19456258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells.
    Mir Y; van Lier JE; Paquette B; Houde D
    Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer.
    Hodgkinson N; Kruger CA; Mokwena M; Abrahamse H
    J Photochem Photobiol B; 2017 Dec; 177():32-38. PubMed ID: 29045918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ClAlPcS(2) photodynamic and sonodynamic therapy on HeLa cells.
    Binder S; Hosikova B; Mala Z; Zarska L; Kolarova H
    Physiol Res; 2019 Dec; 68(Suppl 4):S467-S474. PubMed ID: 32118478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully protected glycosylated zinc (II) phthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7 cancer cells.
    Kimani SG; Shmigol TA; Hammond S; Phillips JB; Bruce JI; MacRobert AJ; Malakhov MV; Golding JP
    Photochem Photobiol; 2013; 89(1):139-49. PubMed ID: 22803957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers.
    Kolarova H; Nevrelova P; Tomankova K; Kolar P; Bajgar R; Mosinger J
    Gen Physiol Biophys; 2008 Jun; 27(2):101-5. PubMed ID: 18645224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of sensitizers by detecting reactive oxygen species after photodynamic reaction in vitro.
    Kolarova H; Bajgar R; Tomankova K; Nevrelova P; Mosinger J
    Toxicol In Vitro; 2007 Oct; 21(7):1287-91. PubMed ID: 17561369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles.
    Pan X; Xie J; Li Z; Chen M; Wang M; Wang PN; Chen L; Mi L
    Colloids Surf B Biointerfaces; 2015 Jun; 130():292-8. PubMed ID: 25935263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines.
    Ahn JC; Chung PS
    Gen Physiol Biophys; 2012 Sep; 31(3):343-50. PubMed ID: 23047947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phthalocyanine-mediated Photodynamic Treatment of Tumoural and Non-tumoural cell lines.
    Manisova B; Binder S; Malina L; Jiravova J; Langova K; Kolarova H
    Anticancer Res; 2015 Jul; 35(7):3943-51. PubMed ID: 26124341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of sequential combination of 5-fluorouracil-loaded-chitosan-nanoparticles and ALA-photodynamic therapy on HeLa cell line.
    Benito-Miguel M; Blanco MD; Gómez C
    Photodiagnosis Photodyn Ther; 2015 Sep; 12(3):466-75. PubMed ID: 25976508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of photodynamic therapy supplemented with quercetin in HEp-2 cells.
    de Paula Rodrigues R; Tini IR; Soares CP; da Silva NS
    Cell Biol Int; 2014 Jun; 38(6):716-22. PubMed ID: 24470266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.