BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25075447)

  • 1. Tunable control of polyproline helix (PPII) structure via aromatic electronic effects: an electronic switch of polyproline helix.
    Pandey AK; Thomas KM; Forbes CR; Zondlo NJ
    Biochemistry; 2014 Aug; 53(32):5307-14. PubMed ID: 25075447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic-proline interactions: electronically tunable CH/π interactions.
    Zondlo NJ
    Acc Chem Res; 2013 Apr; 46(4):1039-49. PubMed ID: 23148796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions.
    Brown AM; Zondlo NJ
    Biochemistry; 2012 Jun; 51(25):5041-51. PubMed ID: 22667692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction.
    Thomas KM; Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Feb; 128(7):2216-7. PubMed ID: 16478167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Backbone Noncovalent Interactions that Stabilize Polyproline II Conformation and Reduce cis Proline Abundance in Polyproline Tracts.
    Sahariah B; Sarma BK
    J Phys Chem B; 2021 Dec; 125(49):13394-13405. PubMed ID: 34851647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4,4-Difluoroproline as a Unique
    Ganguly HK; Ludwig BA; Tressler CM; Bhatt MR; Pandey AK; Quinn CM; Bai S; Yap GPA; Zondlo NJ
    Biochemistry; 2024 May; 63(9):1131-1146. PubMed ID: 38598681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies.
    Lin YJ; Chu LK; Horng JC
    J Phys Chem B; 2015 Dec; 119(52):15796-806. PubMed ID: 26641495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of the Terminal Charged Residues on Polyproline Conformation.
    Huang KY; Horng JC
    J Phys Chem B; 2019 Jan; 123(1):138-147. PubMed ID: 30540171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation.
    Lin YJ; Horng JC
    Amino Acids; 2014 Oct; 46(10):2317-24. PubMed ID: 24947982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of 4-thiaproline on polyproline conformation.
    Lin YJ; Chang CH; Horng JC
    J Phys Chem B; 2014 Sep; 118(37):10813-20. PubMed ID: 25158153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust trans-amide helical structure of oligomers of bicyclic mimics of β-proline: impact of positional switching of bridgehead substituent on amide cis-trans equilibrium.
    Wang S; Otani Y; Liu X; Kawahata M; Yamaguchi K; Ohwada T
    J Org Chem; 2014 Jun; 79(11):5287-300. PubMed ID: 24797491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Left-handed polyproline II helix formation is (very) locally driven.
    Creamer TP
    Proteins; 1998 Nov; 33(2):218-26. PubMed ID: 9779789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of terminal functional groups on the stability of the polyproline II structure: a combined experimental and theoretical study.
    Kuemin M; Schweizer S; Ochsenfeld C; Wennemers H
    J Am Chem Soc; 2009 Oct; 131(42):15474-82. PubMed ID: 19791741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions.
    Wu WJ; Raleigh DP
    Biopolymers; 1998 Apr; 45(5):381-94. PubMed ID: 9530015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cis-trans isomerization of peptoid residues in the collagen triple-helix.
    Qiu R; Li X; Huang K; Bai W; Zhou D; Li G; Qin Z; Li Y
    Nat Commun; 2023 Nov; 14(1):7571. PubMed ID: 37989738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and Steric Control of n→π* Interactions: Stabilization of the α-Helix Conformation without a Hydrogen Bond.
    Wenzell NA; Ganguly HK; Pandey AK; Bhatt MR; Yap GPA; Zondlo NJ
    Chembiochem; 2019 Apr; 20(7):963-967. PubMed ID: 30548564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices.
    Owens NW; Stetefeld J; Lattová E; Schweizer F
    J Am Chem Soc; 2010 Apr; 132(14):5036-42. PubMed ID: 20334378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical twists and β-turns in structures at serine-proline sequences: Stabilization of cis-proline and type VI β-turns via C-H/O interactions.
    Oven HC; Yap GPA; Zondlo NJ
    Proteins; 2024 May; ():. PubMed ID: 38747689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyproline II helix conformation in a proline-rich environment: a theoretical study.
    Vila JA; Baldoni HA; Ripoll DR; Ghosh A; Scheraga HA
    Biophys J; 2004 Feb; 86(2):731-42. PubMed ID: 14747311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.