These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 25075613)
1. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. Zhi X; Li P; Gan X; Zhang W; Shen T; Yuan J; Shen J J Biomater Sci Polym Ed; 2014; 25(14-15):1619-28. PubMed ID: 25075613 [TBL] [Abstract][Full Text] [Related]
2. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Li P; Cai X; Wang D; Chen S; Yuan J; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Oct; 110():327-32. PubMed ID: 23735748 [TBL] [Abstract][Full Text] [Related]
3. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions. Cai X; Yuan J; Chen S; Li P; Li L; Shen J Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():42-8. PubMed ID: 24433885 [TBL] [Abstract][Full Text] [Related]
4. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
5. Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis. Xie B; Zhang R; Zhang H; Xu A; Deng Y; Lv Y; Deng F; Wei S J Biomater Sci Polym Ed; 2016 Jun; 27(9):880-97. PubMed ID: 27018964 [TBL] [Abstract][Full Text] [Related]
6. Preparation of poly(cyclooctene)-g-poly(ethylene glycol) (PCOE-g-PEG) graft copolymers with tunable PEG side chains via ROMP and its protein adsorption and platelet adhesion properties. Yang Y; Shi D; Wang X; Shi H; Jiang T; Yang Y; Luan S; Yin J; Li RK Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():539-45. PubMed ID: 25491862 [TBL] [Abstract][Full Text] [Related]
7. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y; Shen J; Yuan J J Colloid Interface Sci; 2016 Oct; 480():205-217. PubMed ID: 27442148 [TBL] [Abstract][Full Text] [Related]
8. Polymeric material for anti-biofouling. Ma C; Yang H; Zhou X; Wu B; Zhang G Colloids Surf B Biointerfaces; 2012 Dec; 100():31-5. PubMed ID: 22766280 [TBL] [Abstract][Full Text] [Related]
9. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
10. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization. Zhu L; Song H; Wang J; Xue L Mater Sci Eng C Mater Biol Appl; 2017 May; 74():159-166. PubMed ID: 28254281 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Li M; Neoh KG; Xu LQ; Wang R; Kang ET; Lau T; Olszyna DP; Chiong E Langmuir; 2012 Nov; 28(47):16408-22. PubMed ID: 23121175 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of nonfouling polymer brushes on poly(ethylene terephthalate) film surfaces. Li J; Tan D; Zhang X; Tan H; Ding M; Wan C; Fu Q Colloids Surf B Biointerfaces; 2010 Jul; 78(2):343-50. PubMed ID: 20399623 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of ultrahigh molecular weight polyethylene by the poly(ethylene glycol)-grafted method and its effect on the adsorption of proteins and the adhesion of blood platelets. Xia B; Xie M; Yang B J Biomed Mater Res A; 2013 Jan; 101(1):54-63. PubMed ID: 22807149 [TBL] [Abstract][Full Text] [Related]
14. Layer-by-layer zwitterionic modification of diverse substrates with durable anti-corrosion and anti-fouling properties. Li S; Huang P; Ye Z; Wang Y; Wang W; Kong D; Zhang J; Deng L; Dong A J Mater Chem B; 2019 Oct; 7(39):6024-6034. PubMed ID: 31545333 [TBL] [Abstract][Full Text] [Related]
15. Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Wu Z; Tong W; Jiang W; Liu X; Wang Y; Chen H Colloids Surf B Biointerfaces; 2012 Aug; 96():37-43. PubMed ID: 22510455 [TBL] [Abstract][Full Text] [Related]
16. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption. Zhong J; Ji H; Duan J; Tu H; Zhang A Colloids Surf B Biointerfaces; 2016 Apr; 140():254-261. PubMed ID: 26764109 [TBL] [Abstract][Full Text] [Related]
17. Using self-polymerized dopamine to modify the antifouling property of oligo(ethylene glycol) self-assembled monolayers and its application in cell patterning. Sun K; Song L; Xie Y; Liu D; Wang D; Wang Z; Ma W; Zhu J; Jiang X Langmuir; 2011 May; 27(10):5709-12. PubMed ID: 21520908 [TBL] [Abstract][Full Text] [Related]
18. Blood compatibility of surface-engineered poly(ethylene terephthalate) via o-carboxymethylchitosan. Aiping Z; Tian C Colloids Surf B Biointerfaces; 2006 Jul; 50(2):120-5. PubMed ID: 16784839 [TBL] [Abstract][Full Text] [Related]
19. Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility. Xie Y; Li SS; Jiang X; Xiang T; Wang R; Zhao CS J Colloid Interface Sci; 2015 Apr; 443():36-44. PubMed ID: 25528533 [TBL] [Abstract][Full Text] [Related]