BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4114 related articles for article (PubMed ID: 25075903)

  • 21. Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing.
    Tang H; Zhao X; Jiang X
    Adv Drug Deliv Rev; 2021 Jan; 168():55-78. PubMed ID: 32147450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of the CRISPR/Cas9 system in murine cancer modeling.
    Zuckermann M; Kawauchi D; Gronych J
    Brief Funct Genomics; 2017 Jan; 16(1):25-33. PubMed ID: 27273122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Next-generation libraries for robust RNA interference-based genome-wide screens.
    Kampmann M; Horlbeck MA; Chen Y; Tsai JC; Bassik MC; Gilbert LA; Villalta JE; Kwon SC; Chang H; Kim VN; Weissman JS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):E3384-91. PubMed ID: 26080438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.
    Mout R; Ray M; Lee YW; Scaletti F; Rotello VM
    Bioconjug Chem; 2017 Apr; 28(4):880-884. PubMed ID: 28263568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
    Kuscu C; Parlak M; Tufan T; Yang J; Szlachta K; Wei X; Mammadov R; Adli M
    Nat Methods; 2017 Jul; 14(7):710-712. PubMed ID: 28581493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
    Joung J; Konermann S; Gootenberg JS; Abudayyeh OO; Platt RJ; Brigham MD; Sanjana NE; Zhang F
    Nat Protoc; 2017 Apr; 12(4):828-863. PubMed ID: 28333914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short communication: Determination of Salmonella clustered regularly interspaced short palindromic repeats (CRISPR) diversity on dairy farms in Wisconsin and Minnesota.
    Wehnes CA; Rehberger TG; Barrangou R; Smith AH
    J Dairy Sci; 2014 Oct; 97(10):6370-7. PubMed ID: 25108866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA interference and CRISPR: Promising approaches to better understand and control citrus pathogens.
    Goulin EH; Galdeano DM; Granato LM; Matsumura EE; Dalio RJD; Machado MA
    Microbiol Res; 2019 Sep; 226():1-9. PubMed ID: 31284938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats in the Genomes of Shigella].
    Wang P; Wang Y; Duan G; Xue Z; Wang L; Guo X; Yang H; Xi Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):343-9. PubMed ID: 26211252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repurposing CRISPR/Cas9 for in situ functional assays.
    Malina A; Mills JR; Cencic R; Yan Y; Fraser J; Schippers LM; Paquet M; Dostie J; Pelletier J
    Genes Dev; 2013 Dec; 27(23):2602-14. PubMed ID: 24298059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening.
    Lane AB; Strzelecka M; Ettinger A; Grenfell AW; Wittmann T; Heald R
    Dev Cell; 2015 Aug; 34(3):373-8. PubMed ID: 26212133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants.
    Lu HP; Liu SM; Xu SL; Chen WY; Zhou X; Tan YY; Huang JZ; Shu QY
    Plant Biotechnol J; 2017 Nov; 15(11):1371-1373. PubMed ID: 28688132
    [No Abstract]   [Full Text] [Related]  

  • 37. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The application of CRISPR/Cas9 genome editing technology in cancer research].
    Wang DY; Ma N; Hui Y; Gao X
    Yi Chuan; 2016 Jan; 38(1):1-8. PubMed ID: 26787518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR EATING on a Low Budget.
    Kaya-Okur HS; Belmont AS
    Dev Cell; 2015 Aug; 34(3):253-4. PubMed ID: 26267392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. VipariNama: combining CRISPR and systemic virus-based vectors for rapid phenotyping of complex plant traits.
    Calla B; Moreno JE
    Plant Physiol; 2021 Aug; 186(4):1754-1756. PubMed ID: 34618118
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 206.