These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25075940)

  • 1. PTPN3 mutations and HBV may exert synergistic effects in the origin of the intrahepatic cholangiocarcinoma.
    Cardinale V; Alvaro D
    Gastroenterology; 2014 Sep; 147(3):719-20. PubMed ID: 25075940
    [No Abstract]   [Full Text] [Related]  

  • 2. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients.
    Gao Q; Zhao YJ; Wang XY; Guo WJ; Gao S; Wei L; Shi JY; Shi GM; Wang ZC; Zhang YN; Shi YH; Ding J; Ding ZB; Ke AW; Dai Z; Wu FZ; Wang H; Qiu ZP; Chen ZA; Zhang ZF; Qiu SJ; Zhou J; He XH; Fan J
    Gastroenterology; 2014 May; 146(5):1397-407. PubMed ID: 24503127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PTPN3 suppresses the proliferation and correlates with favorable prognosis of perihilar cholangiocarcinoma by inhibiting AKT phosphorylation.
    Sun R; Chen T; Li M; Liu Z; Qiu B; Li Z; Xu Y; Pan C; Zhang Z
    Biomed Pharmacother; 2020 Jan; 121():109583. PubMed ID: 31706106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma.
    Scheimann AO; Strautnieks SS; Knisely AS; Byrne JA; Thompson RJ; Finegold MJ
    J Pediatr; 2007 May; 150(5):556-9. PubMed ID: 17452236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity.
    Yuan B; Liu J; Cao J; Yu Y; Zhang H; Wang F; Zhu Y; Xiao M; Liu S; Ye Y; Ma L; Xu D; Xu N; Li Y; Zhao B; Xu P; Jin J; Xu J; Chen X; Shen L; Lin X; Feng XH
    EMBO J; 2019 Jul; 38(14):e99945. PubMed ID: 31304624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gatekeeper Mutations and Intratumoral Heterogeneity in
    Smyth EC; Babina IS; Turner NC
    Cancer Discov; 2017 Mar; 7(3):248-249. PubMed ID: 28264865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MYH Y165C and G382D mutations in hepatocellular carcinoma and cholangiocarcinoma patients.
    Baudhuin LM; Roberts LR; Enders FT; Swanson RL; Mettler TA; Aderca I; Stadheim LM; Highsmith WE
    J Cancer Res Clin Oncol; 2006 Mar; 132(3):159-62. PubMed ID: 16292541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholangiocarcinoma.
    Krasinskas AM
    Surg Pathol Clin; 2018 Jun; 11(2):403-429. PubMed ID: 29751883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 Mutations in human cholangiocarcinoma: a review.
    Khan SA; Thomas HC; Toledano MB; Cox IJ; Taylor-Robinson SD
    Liver Int; 2005 Aug; 25(4):704-16. PubMed ID: 15998419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping signature genes between hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
    Chen F; Li S; Castranova V
    Eur J Gastroenterol Hepatol; 2009 Nov; 21(11):1320-1. PubMed ID: 19826380
    [No Abstract]   [Full Text] [Related]  

  • 11. ABCB4/MDR3 gene mutations and cholangiocarcinomas.
    Tougeron D; Fotsing G; Barbu V; Beauchant M
    J Hepatol; 2012 Aug; 57(2):467-8. PubMed ID: 22387667
    [No Abstract]   [Full Text] [Related]  

  • 12. KRAS mutation in biliary tract cholangiocarcinoma.
    Yasri S; Wiwanitkit V
    J Formos Med Assoc; 2017 Mar; 116(3):214. PubMed ID: 28007466
    [No Abstract]   [Full Text] [Related]  

  • 13. Genomic decoding of intrahepatic cholangiocarcinoma reveals therapeutic opportunities.
    Andersen JB; Thorgeirsson SS
    Gastroenterology; 2013 Apr; 144(4):687-90. PubMed ID: 23462122
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of epigenetic alterations in cholangiocarcinoma.
    Tischoff I; Wittekind C; Tannapfel A
    J Hepatobiliary Pancreat Surg; 2006; 13(4):274-9. PubMed ID: 16858537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological type of intrahepatic cholangiocarcinoma differentiated by genetic alteration from AP-PCR fingerprint.
    Chuensumran U; Saelee P; Wongkham S; Pairojkul C; Chauin S; Petmitr S
    Asian Pac J Cancer Prev; 2011; 12(6):1377-80. PubMed ID: 22126467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutics targets for tyrosine kinase inhibitors.
    Brandi G; Tavolari S; Biasco G
    Gastroenterology; 2012 Oct; 143(4):e20-1; author reply e21. PubMed ID: 22921673
    [No Abstract]   [Full Text] [Related]  

  • 17. Mutational landscape of intrahepatic cholangiocarcinoma.
    Zou S; Li J; Zhou H; Frech C; Jiang X; Chu JS; Zhao X; Li Y; Li Q; Wang H; Hu J; Kong G; Wu M; Ding C; Chen N; Hu H
    Nat Commun; 2014 Dec; 5():5696. PubMed ID: 25526346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer genes and cholangiocarcinoma.
    Petmitr S
    Southeast Asian J Trop Med Public Health; 1997; 28 Suppl 1():80-4. PubMed ID: 9656355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Expression of melanoma antigen-1, 3 genes in human intrahepatic cholangiocarcinoma and its clinical significance].
    Lu X; Zhao HT; Sang XT; Mao YL; Chen RR; Zhong SX; Huang JF
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2008 Apr; 30(2):197-200. PubMed ID: 18505125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro.
    Wu WR; Zhang R; Shi XD; Zhu MS; Xu LB; Zeng H; Liu C
    Oncol Rep; 2014 Jun; 31(6):2515-24. PubMed ID: 24700253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.