These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
5. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. Deng D; Jin Y; Cheng Y; Qi T; Xiao F ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010 [TBL] [Abstract][Full Text] [Related]
6. Hybrid Copper-Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering. Yim C; Sandwell A; Park SS ACS Appl Mater Interfaces; 2016 Aug; 8(34):22369-73. PubMed ID: 27514569 [TBL] [Abstract][Full Text] [Related]
7. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier. Jha M; Dharmadasa R; Draper GL; Sherehiy A; Sumanasekera G; Amos D; Druffel T Nanotechnology; 2015 May; 26(17):175601. PubMed ID: 25854751 [TBL] [Abstract][Full Text] [Related]
8. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity. Chung WH; Hwang YT; Lee SH; Kim HS Nanotechnology; 2016 May; 27(20):205704. PubMed ID: 27070756 [TBL] [Abstract][Full Text] [Related]
9. Study of Copper-Nickel Nanoparticle Resistive Ink Compatible with Printed Copper Films for Power Electronics Applications. Hlina J; Reboun J; Hamacek A Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832439 [TBL] [Abstract][Full Text] [Related]
10. Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings. Pajor-Świerzy A; Staśko D; Pawłowski R; Mordarski G; Kamyshny A; Szczepanowicz K Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946794 [TBL] [Abstract][Full Text] [Related]
11. High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion. Wegner K; Vinati S; Piseri P; Antonini A; Zelioli A; Barborini E; Ducati C; Milani P Nanotechnology; 2012 May; 23(18):185603. PubMed ID: 22516767 [TBL] [Abstract][Full Text] [Related]
12. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition. Otelaja OO; Ha DH; Ly T; Zhang H; Robinson RD ACS Appl Mater Interfaces; 2014 Nov; 6(21):18911-20. PubMed ID: 25314692 [TBL] [Abstract][Full Text] [Related]
13. Conductive inks with a "built-in" mechanism that enables sintering at room temperature. Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. Kanzaki M; Kawaguchi Y; Kawasaki H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786 [TBL] [Abstract][Full Text] [Related]
16. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering. Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138 [TBL] [Abstract][Full Text] [Related]
17. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Joo SJ; Hwang HJ; Kim HS Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116 [TBL] [Abstract][Full Text] [Related]
18. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. Dharmadasa R; Jha M; Amos DA; Druffel T ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767 [TBL] [Abstract][Full Text] [Related]
19. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles. Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487 [TBL] [Abstract][Full Text] [Related]
20. Interface Modified Flexible Printed Conductive Films via Ag Meng Y; Ma T; Pavinatto FJ; MacKenzie JD ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]