These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25076380)
1. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380 [TBL] [Abstract][Full Text] [Related]
2. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849 [TBL] [Abstract][Full Text] [Related]
3. Overproduction of α-Farnesene in Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134 [TBL] [Abstract][Full Text] [Related]
4. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related]
5. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. van Rossum HM; Kozak BU; Pronk JT; van Maris AJA Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336 [TBL] [Abstract][Full Text] [Related]
6. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Chen Y; Daviet L; Schalk M; Siewers V; Nielsen J Metab Eng; 2013 Jan; 15():48-54. PubMed ID: 23164578 [TBL] [Abstract][Full Text] [Related]
7. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762 [TBL] [Abstract][Full Text] [Related]
8. Metabolic Engineering of Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424 [TBL] [Abstract][Full Text] [Related]
9. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture. Snyder NW; Tombline G; Worth AJ; Parry RC; Silvers JA; Gillespie KP; Basu SS; Millen J; Goldfarb DS; Blair IA Anal Biochem; 2015 Apr; 474():59-65. PubMed ID: 25572876 [TBL] [Abstract][Full Text] [Related]
10. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Taherzadeh MJ; Lidén G; Gustafsson L; Niklasson C Appl Microbiol Biotechnol; 1996 Sep; 46(2):176-82. PubMed ID: 8987648 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Divate NR; Chen GH; Divate RD; Ou BR; Chung YC Bioengineered; 2017 Sep; 8(5):524-535. PubMed ID: 27937123 [TBL] [Abstract][Full Text] [Related]
13. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Yamada R; Wakita K; Mitsui R; Ogino H Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210 [TBL] [Abstract][Full Text] [Related]
14. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Asadollahi MA; Maury J; Patil KR; Schalk M; Clark A; Nielsen J Metab Eng; 2009 Nov; 11(6):328-34. PubMed ID: 19619667 [TBL] [Abstract][Full Text] [Related]
15. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Latimer LN; Dueber JE Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133 [TBL] [Abstract][Full Text] [Related]
16. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. Yang X; Nambou K; Wei L; Hua Q Bioresour Technol; 2016 Sep; 216():1040-8. PubMed ID: 27347651 [TBL] [Abstract][Full Text] [Related]
17. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. Stolz J; Sauer N J Biol Chem; 1999 Jun; 274(26):18747-52. PubMed ID: 10373490 [TBL] [Abstract][Full Text] [Related]
18. Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae. Tippmann S; Ferreira R; Siewers V; Nielsen J; Chen Y J Ind Microbiol Biotechnol; 2017 Jun; 44(6):911-922. PubMed ID: 28185100 [TBL] [Abstract][Full Text] [Related]
19. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Buijs NA; Siewers V; Nielsen J Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723 [TBL] [Abstract][Full Text] [Related]
20. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Meadows AL; Hawkins KM; Tsegaye Y; Antipov E; Kim Y; Raetz L; Dahl RH; Tai A; Mahatdejkul-Meadows T; Xu L; Zhao L; Dasika MS; Murarka A; Lenihan J; Eng D; Leng JS; Liu CL; Wenger JW; Jiang H; Chao L; Westfall P; Lai J; Ganesan S; Jackson P; Mans R; Platt D; Reeves CD; Saija PR; Wichmann G; Holmes VF; Benjamin K; Hill PW; Gardner TS; Tsong AE Nature; 2016 Sep; 537(7622):694-697. PubMed ID: 27654918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]