BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25076380)

  • 1. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.
    Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL
    Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism.
    Chen Y; Daviet L; Schalk M; Siewers V; Nielsen J
    Metab Eng; 2013 Jan; 15():48-54. PubMed ID: 23164578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
    Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS
    Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering of
    Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T
    J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture.
    Snyder NW; Tombline G; Worth AJ; Parry RC; Silvers JA; Gillespie KP; Basu SS; Millen J; Goldfarb DS; Blair IA
    Anal Biochem; 2015 Apr; 474():59-65. PubMed ID: 25572876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae.
    Taherzadeh MJ; Lidén G; Gustafsson L; Niklasson C
    Appl Microbiol Biotechnol; 1996 Sep; 46(2):176-82. PubMed ID: 8987648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance.
    Divate NR; Chen GH; Divate RD; Ou BR; Chung YC
    Bioengineered; 2017 Sep; 8(5):524-535. PubMed ID: 27937123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering.
    Asadollahi MA; Maury J; Patil KR; Schalk M; Clark A; Nielsen J
    Metab Eng; 2009 Nov; 11(6):328-34. PubMed ID: 19619667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica.
    Yang X; Nambou K; Wei L; Hua Q
    Bioresour Technol; 2016 Sep; 216():1040-8. PubMed ID: 27347651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter.
    Stolz J; Sauer N
    J Biol Chem; 1999 Jun; 274(26):18747-52. PubMed ID: 10373490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae.
    Tippmann S; Ferreira R; Siewers V; Nielsen J; Chen Y
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):911-922. PubMed ID: 28185100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewriting yeast central carbon metabolism for industrial isoprenoid production.
    Meadows AL; Hawkins KM; Tsegaye Y; Antipov E; Kim Y; Raetz L; Dahl RH; Tai A; Mahatdejkul-Meadows T; Xu L; Zhao L; Dasika MS; Murarka A; Lenihan J; Eng D; Leng JS; Liu CL; Wenger JW; Jiang H; Chao L; Westfall P; Lai J; Ganesan S; Jackson P; Mans R; Platt D; Reeves CD; Saija PR; Wichmann G; Holmes VF; Benjamin K; Hill PW; Gardner TS; Tsong AE
    Nature; 2016 Sep; 537(7622):694-697. PubMed ID: 27654918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.