These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25076528)

  • 1. A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment.
    Wang P; Sun G; Jia Y; Meharg AA; Zhu Y
    J Environ Sci (China); 2014 Feb; 26(2):371-81. PubMed ID: 25076528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biovolatilisation: a poorly studied pathway of the arsenic biogeochemical cycle.
    Mestrot A; Planer-Friedrich B; Feldmann J
    Environ Sci Process Impacts; 2013 Sep; 15(9):1639-51. PubMed ID: 23824266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil.
    Mestrot A; Uroic MK; Plantevin T; Islam MR; Krupp EM; Feldmann J; Meharg AA
    Environ Sci Technol; 2009 Nov; 43(21):8270-5. PubMed ID: 19924955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of biologic gasification potential of arsenic from contaminated natural soil by enumeration of arsenic methylating bacteria.
    Islam SM; Fukushi K; Yamamoto K; Saha GC
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):332-8. PubMed ID: 17354031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.
    Kruger MC; Bertin PN; Heipieper HJ; Arsène-Ploetze F
    Appl Microbiol Biotechnol; 2013 May; 97(9):3827-41. PubMed ID: 23546422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Action mechanisms of microorganisms on arsenic and the feasibility of utilizing fungi remediation of arsenic-contaminated soil].
    Su SM; Zeng XB; Bai LY; Li LF
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3266-72. PubMed ID: 21443018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.
    Dhuldhaj UP; Yadav IC; Singh S; Sharma NK
    Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Arsenic Methylation in Soil and Uptake and Metabolism of Methylated Arsenic in Plants: A Review.
    Di X; Beesley L; Zhang Z; Zhi S; Jia Y; Ding Y
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31835448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ecology of arsenic.
    Oremland RS; Stolz JF
    Science; 2003 May; 300(5621):939-44. PubMed ID: 12738852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM10): evidence of the widespread phenomena of biovolatilization of arsenic.
    Jakob R; Roth A; Haas K; Krupp EM; Raab A; Smichowski P; Gómez D; Feldmann J
    J Environ Monit; 2010 Feb; 12(2):409-16. PubMed ID: 20145880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field fluxes and speciation of arsines emanating from soils.
    Mestrot A; Feldmann J; Krupp EM; Hossain MS; Roman-Ross G; Meharg AA
    Environ Sci Technol; 2011 Mar; 45(5):1798-804. PubMed ID: 21284382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic methylation by micro-organisms isolated from sheepskin bedding materials.
    Lehr CR; Polishchuk E; Delisle MC; Franz C; Cullen WR
    Hum Exp Toxicol; 2003 Jun; 22(6):325-34. PubMed ID: 12856955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microorganisms and their roles in fundamental biogeochemical cycles.
    Madsen EL
    Curr Opin Biotechnol; 2011 Jun; 22(3):456-64. PubMed ID: 21333523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Current researches in microbial remediation of arsenic pollution].
    Wu J; Xie MJ; Yang Q; Tu SX
    Huan Jing Ke Xue; 2011 Mar; 32(3):817-24. PubMed ID: 21634183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization.
    Li J; Sun Y; Zhang X; Hu Y; Li T; Zhang X; Wang Z; Wu S; Wu Z; Chen B
    Chemosphere; 2018 Oct; 209():392-400. PubMed ID: 29935468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.
    Verma S; Verma PK; Meher AK; Dwivedi S; Bansiwal AK; Pande V; Srivastava PK; Verma PC; Tripathi RD; Chakrabarty D
    Metallomics; 2016 Mar; 8(3):344-53. PubMed ID: 26776948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri.
    Zhang SY; Sun GX; Yin XX; Rensing C; Zhu YG
    Chemosphere; 2013 Sep; 93(1):47-53. PubMed ID: 23726009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiology of inorganic arsenic: From metabolism to bioremediation.
    Yamamura S; Amachi S
    J Biosci Bioeng; 2014 Jul; 118(1):1-9. PubMed ID: 24507904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene.
    Yuan C; Lu X; Qin J; Rosen BP; Le XC
    Environ Sci Technol; 2008 May; 42(9):3201-6. PubMed ID: 18522094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions.
    Cernanský S; Kolencík M; Sevc J; Urík M; Hiller E
    Bioresour Technol; 2009 Jan; 100(2):1037-40. PubMed ID: 18774290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.