These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25077355)

  • 1. A comparison on the phytoremediation ability of triazophos by different macrophytes.
    Li Z; Xiao H; Cheng S; Zhang L; Xiel X; Wu Z
    J Environ Sci (China); 2014 Feb; 26(2):315-22. PubMed ID: 25077355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial community variation in phytoremediation of triazophos by Canna indica Linn. in a hydroponic system.
    Xiao H; Cheng S; Wu Z
    J Environ Sci (China); 2010; 22(8):1225-31. PubMed ID: 21179962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical note phytoremediation of triazophos by Canna indica Linn. in a hydroponic system.
    Cheng S; Xiao J; Xiao H; Zhang L; Wu Z
    Int J Phytoremediation; 2007; 9(6):453-63. PubMed ID: 18246772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of sulfamethoxazole removal by three wetland plant species under hydroponic conditions: uptake, accumulation, and physiological responses.
    Li L; Yang F; A D; Jiang Y; Chen M; Zhang X; Yang Y
    Int J Phytoremediation; 2024; 26(9):1383-1391. PubMed ID: 38459767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.
    He H; Gao H; Chen G; Li H; Lin H; Shu Z
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7301-8. PubMed ID: 23673920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species.
    Tang XY; Yang Y; McBride MB; Tao R; Dai YN; Zhang XM
    Chemosphere; 2019 Feb; 216():195-202. PubMed ID: 30368084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential for phytoremediation of neonicotinoids by nine wetland plants.
    Liu H; Tang X; Xu X; Dai Y; Zhang X; Yang Y
    Chemosphere; 2021 Nov; 283():131083. PubMed ID: 34182627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments.
    Sricoth T; Meeinkuirt W; Saengwilai P; Pichtel J; Taeprayoon P
    Environ Sci Pollut Res Int; 2018 May; 25(15):14964-14976. PubMed ID: 29550977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW).
    Wu J; Feng Y; Dai Y; Cui N; Anderson B; Cheng S
    Sci Total Environ; 2016 May; 553():13-19. PubMed ID: 26897579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of antibiotics on nitrogen uptake of four wetland plant species grown under hydroponic culture.
    Tong X; Wang X; He X; Sui Y; Shen J; Feng J
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10621-10630. PubMed ID: 30762179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triazophos (TAP) removal in horizontal subsurface flow constructed wetlands (HSCWs) and its accumulation in plants and substrates.
    Wu J; Li Z; Wu L; Zhong F; Cui N; Dai Y; Cheng S
    Sci Rep; 2017 Jul; 7(1):5468. PubMed ID: 28710370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium.
    Lv T; Zhang Y; Casas ME; Carvalho PN; Arias CA; Bester K; Brix H
    Chemosphere; 2016 Apr; 148():459-66. PubMed ID: 26841287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floating-bed].
    Wu JQ; Wang M; Wu J; Jiang Y; Sun CJ; Cao Y
    Huan Jing Ke Xue; 2011 Apr; 32(4):995-9. PubMed ID: 21717738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contaminant removal from low-concentration polluted river water by the bio-rack wetlands.
    Wang J; Zhang L; Lu S; Jin X; Gan S
    J Environ Sci (China); 2012; 24(6):1006-13. PubMed ID: 23505867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of
    Machado AI; Fragoso R; Dordio AV; Duarte E
    Int J Phytoremediation; 2020; 22(8):863-871. PubMed ID: 32028785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures.
    Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I
    J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina).
    Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance evaluation of
    Tejeda A; Valencia-Botín AJ; Zurita F
    Int J Phytoremediation; 2023; 25(10):1259-1268. PubMed ID: 36382673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of heavy metal and nutrients removal in
    Olawale O; Raphael DO; Akinbile CO; Ishuwa K
    Int J Phytoremediation; 2021; 23(13):1382-1390. PubMed ID: 33749413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.