BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25077371)

  • 1. Factor defining the effects of glycine betaine on the thermodynamic stability and internal dynamics of horse cytochrome C.
    Jain R; Sharma D; Kumar S; Kumar R
    Biochemistry; 2014 Aug; 53(32):5221-35. PubMed ID: 25077371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro.
    Kumar R; Sharma D; Kumar V; Kumar R
    Arch Biochem Biophys; 2018 Sep; 654():146-162. PubMed ID: 30048628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of urea and alkylureas on the stability and structural fluctuation of the M80-containing Ω-loop of horse cytochrome c.
    Kumar S; Sharma D; Kumar R
    Biochim Biophys Acta; 2014 Mar; 1844(3):641-55. PubMed ID: 24480108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein stabilization by urea and guanidine hydrochloride.
    Bhuyan AK
    Biochemistry; 2002 Nov; 41(45):13386-94. PubMed ID: 12416983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of glycine betaine with proteins: insights from volume and compressibility measurements.
    Shek YL; Chalikian TV
    Biochemistry; 2013 Jan; 52(4):672-80. PubMed ID: 23293944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-state folding of horse ferrocytochrome c: analyses of linear free energy relationship, chevron curvature, and stopped-flow burst relaxation kinetics.
    Kumar R; Bhuyan AK
    Biochemistry; 2005 Mar; 44(8):3024-33. PubMed ID: 15723546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the pH-dependent thermodynamic stability, local motions, and microsecond folding kinetics of carbonmonoxycytochrome c.
    Kumar R
    Arch Biochem Biophys; 2016 Sep; 606():16-25. PubMed ID: 27424489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface.
    Felitsky DJ; Record MT
    Biochemistry; 2004 Jul; 43(28):9276-88. PubMed ID: 15248785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential interactions of glycine betaine and of urea with DNA: implications for DNA hydration and for effects of these solutes on DNA stability.
    Hong J; Capp MW; Anderson CF; Saecker RM; Felitsky DJ; Anderson MW; Record MT
    Biochemistry; 2004 Nov; 43(46):14744-58. PubMed ID: 15544345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cosolvent on protein stability: a theoretical investigation.
    Chalikian TV
    J Chem Phys; 2014 Dec; 141(22):22D504. PubMed ID: 25494775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanidine hydrochloride-induced alkali molten globule model of horse ferrocytochrome c.
    Jain R; Kaur S; Kumar R
    J Biochem; 2013 Feb; 153(2):161-77. PubMed ID: 23162069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c.
    Jain R; Sharma D; Kumar R
    J Biochem; 2013 Oct; 154(4):341-54. PubMed ID: 23836918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein stabilization and counteraction of denaturing effect of urea by glycine betaine.
    Kumar N; Kishore N
    Biophys Chem; 2014 May; 189():16-24. PubMed ID: 24698949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denaturant dependence of equilibrium unfolding intermediates and denatured state structure of horse ferricytochrome c.
    Russell BS; Bren KL
    J Biol Inorg Chem; 2002 Sep; 7(7-8):909-16. PubMed ID: 12203029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein stability: functional dependence of denaturational Gibbs energy on urea concentration.
    Gupta R; Ahmad F
    Biochemistry; 1999 Feb; 38(8):2471-9. PubMed ID: 10029541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lysine 73-->histidine variant of yeast iso-1-cytochrome c: evidence for a native-like intermediate in the unfolding pathway and implications for m value effects.
    Godbole S; Dong A; Garbin K; Bowler BE
    Biochemistry; 1997 Jan; 36(1):119-26. PubMed ID: 8993325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.