These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25077554)

  • 1. Heterotopic mucosal engrafting procedure for direct drug delivery to the brain in mice.
    Kohman RE; Han X; Bleier BS
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25077554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct CNS delivery of proteins using thermosensitive liposome-in-gel carrier by heterotopic mucosal engrafting.
    Pawar GN; Parayath NN; Nocera AL; Bleier BS; Amiji MM
    PLoS One; 2018; 13(12):e0208122. PubMed ID: 30517163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeabilization of the blood-brain barrier via mucosal engrafting: implications for drug delivery to the brain.
    Bleier BS; Kohman RE; Feldman RE; Ramanlal S; Han X
    PLoS One; 2013; 8(4):e61694. PubMed ID: 23637885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The blood-brain barrier and nasal drug delivery to the central nervous system.
    Miyake MM; Bleier BS
    Am J Rhinol Allergy; 2015; 29(2):124-7. PubMed ID: 25785753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting.
    Marianecci C; Rinaldi F; Hanieh PN; Di Marzio L; Paolino D; Carafa M
    Drug Des Devel Ther; 2017; 11():325-335. PubMed ID: 28184152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nasal floor free mucosal graft for skull base reconstruction and cerebrospinal fluid leak repair.
    Suh JD; Ramakrishnan VR; DeConde AS
    Ann Otol Rhinol Laryngol; 2012 Feb; 121(2):91-5. PubMed ID: 22397216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transnasal endoscopic repair of cerebrospinal fluid rhinorrhea and skull base defect: ten-year experience.
    Lee TJ; Huang CC; Chuang CC; Huang SF
    Laryngoscope; 2004 Aug; 114(8):1475-81. PubMed ID: 15280729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.
    Kumar H; Mishra G; Sharma AK; Gothwal A; Kesharwani P; Gupta U
    Pharm Nanotechnol; 2017; 5(3):203-214. PubMed ID: 28521670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat model of blood-brain barrier disruption to allow targeted neurovascular therapeutics.
    Martin JA; Maris AS; Ehtesham M; Singer RJ
    J Vis Exp; 2012 Nov; (69):e50019. PubMed ID: 23222697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug delivery systems from nose to brain.
    Misra A; Kher G
    Curr Pharm Biotechnol; 2012 Sep; 13(12):2355-79. PubMed ID: 23016642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials.
    Bruinsmann FA; Richter Vaz G; de Cristo Soares Alves A; Aguirre T; Raffin Pohlmann A; Stanisçuaski Guterres S; Sonvico F
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31779126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoneurotherapeutics approach intended for direct nose to brain delivery.
    Md S; Mustafa G; Baboota S; Ali J
    Drug Dev Ind Pharm; 2015; 41(12):1922-34. PubMed ID: 26057769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bypassing the blood-brian barrier using established skull base reconstruction techniques.
    Miyake MM; Bleier BS
    World J Otorhinolaryngol Head Neck Surg; 2015 Sep; 1(1):11-16. PubMed ID: 29204535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoscopic treatment of cerebrospinal fluid leaks with the use of lower turbinate grafts: a retrospective review of 125 cases.
    Cassano M; Felippu A
    Rhinology; 2009 Dec; 47(4):362-8. PubMed ID: 19936359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosized Drug Delivery Systems for Direct Nose to Brain Targeting: A Review.
    Phukan K; Nandy M; Sharma RB; Sharma HK
    Recent Pat Drug Deliv Formul; 2016; 10(2):156-64. PubMed ID: 26996366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions.
    Pelekanos M; Leinenga G; Odabaee M; Odabaee M; Saifzadeh S; Steck R; Götz J
    Theranostics; 2018; 8(9):2583-2602. PubMed ID: 29721100
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative study of preclinical mouse models of high-grade glioma for nanomedicine research: the importance of reproducing blood-brain barrier heterogeneity.
    Brighi C; Reid L; Genovesi LA; Kojic M; Millar A; Bruce Z; White AL; Day BW; Rose S; Whittaker AK; Puttick S
    Theranostics; 2020; 10(14):6361-6371. PubMed ID: 32483457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobiotechnology-based strategies for crossing the blood-brain barrier.
    Jain KK
    Nanomedicine (Lond); 2012 Aug; 7(8):1225-33. PubMed ID: 22931448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotopic Mucosal Grafting Enables the Delivery of Therapeutic Neuropeptides Across the Blood Brain Barrier.
    Bleier BS; Kohman RE; Guerra K; Nocera AL; Ramanlal S; Kocharyan AH; Curry WT; Han X
    Neurosurgery; 2016 Mar; 78(3):448-57; discussion 457. PubMed ID: 26352099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo.
    Choi JJ; Wang S; Tung YS; Morrison B; Konofagou EE
    Ultrasound Med Biol; 2010 Jan; 36(1):58-67. PubMed ID: 19900750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.