These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25077957)

  • 21. SEED CAROTENOID DEFICIENT Functions in Isoprenoid Biosynthesis via the Plastid MEP Pathway.
    Zhang L; Zhang X; Wang X; Xu J; Wang M; Li L; Bai G; Fang H; Hu S; Li J; Yan J; Li J; Yang X
    Plant Physiol; 2019 Apr; 179(4):1723-1738. PubMed ID: 30718347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.
    Estévez JM; Cantero A; Reindl A; Reichler S; León P
    J Biol Chem; 2001 Jun; 276(25):22901-9. PubMed ID: 11264287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homology modeling of Mycobacterium tuberculosis 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, the third enzyme in the MEP pathway for isoprenoid biosynthesis.
    Obiol-Pardo C; Cordero A; Rubio-Martinez J; Imperial S
    J Mol Model; 2010 Jun; 16(6):1061-73. PubMed ID: 19916033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supply of precursors for carotenoid biosynthesis in plants.
    Rodríguez-Concepción M
    Arch Biochem Biophys; 2010 Dec; 504(1):118-22. PubMed ID: 20561506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the nonmevalonate pathway of terpene biosynthesis. The role of 2C-methyl-D-erythritol 2,4-cyclodiphosphate in plants.
    Fellermeier M; Raschke M; Sagner S; Wungsintaweekul J; Schuhr CA; Hecht S; Kis K; Radykewicz T; Adam P; Rohdich F; Eisenreich W; Bacher A; Arigoni D; Zenk MH
    Eur J Biochem; 2001 Dec; 268(23):6302-10. PubMed ID: 11733027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carotenoids, versatile components of oxygenic photosynthesis.
    Domonkos I; Kis M; Gombos Z; Ughy B
    Prog Lipid Res; 2013 Oct; 52(4):539-61. PubMed ID: 23896007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying the Metabolites of the Methylerythritol 4-Phosphate (MEP) Pathway in Plants and Bacteria by Liquid Chromatography-Triple Quadrupole Mass Spectrometry.
    González-Cabanelas D; Hammerbacher A; Raguschke B; Gershenzon J; Wright LP
    Methods Enzymol; 2016; 576():225-49. PubMed ID: 27480689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis.
    Campos N; Rodríguez-Concepción M; Sauret-Güeto S; Gallego F; Lois LM; Boronat A
    Biochem J; 2001 Jan; 353(Pt 1):59-67. PubMed ID: 11115399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants.
    Skorupinska-Tudek K; Poznanski J; Wojcik J; Bienkowski T; Szostkiewicz I; Zelman-Femiak M; Bajda A; Chojnacki T; Olszowska O; Grunler J; Meyer O; Rohmer M; Danikiewicz W; Swiezewska E
    J Biol Chem; 2008 Jul; 283(30):21024-35. PubMed ID: 18502754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early steps of deoxyxylulose phosphate pathway in chromoplasts of higher plants.
    Fellermeier M; Sagner S; Spiteller P; Spiteller M; Zenk MH
    Phytochemistry; 2003 Sep; 64(1):199-207. PubMed ID: 12946418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting the methyl erythritol phosphate (MEP) pathway for novel antimalarial, antibacterial and herbicidal drug discovery: inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) enzyme.
    Singh N; Chevé G; Avery MA; McCurdy CR
    Curr Pharm Des; 2007; 13(11):1161-77. PubMed ID: 17430177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells.
    Gerber E; Hemmerlin A; Hartmann M; Heintz D; Hartmann MA; Mutterer J; Rodríguez-Concepción M; Boronat A; Van Dorsselaer A; Rohmer M; Crowell DN; Bach TJ
    Plant Cell; 2009 Jan; 21(1):285-300. PubMed ID: 19136647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The methylerythritol phosphate pathway and its significance as a novel drug target.
    Testa CA; Brown MJ
    Curr Pharm Biotechnol; 2003 Aug; 4(4):248-59. PubMed ID: 14529427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway.
    Guleria P; Masand S; Yadav SK
    Gene; 2014 Apr; 539(2):250-7. PubMed ID: 24518812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne').
    Jiang F; Liu D; Dai J; Yang T; Zhang J; Che D; Fan J
    Mol Biotechnol; 2024 Jan; 66(1):56-67. PubMed ID: 37014586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis.
    Pokhilko A; Bou-Torrent J; Pulido P; Rodríguez-Concepción M; Ebenhöh O
    New Phytol; 2015 May; 206(3):1075-1085. PubMed ID: 25598499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.
    Sando T; Takeno S; Watanabe N; Okumoto H; Kuzuyama T; Yamashita A; Hattori M; Ogasawara N; Fukusaki E; Kobayashi A
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):2903-17. PubMed ID: 18997428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5.
    Mannen K; Matsumoto T; Takahashi S; Yamaguchi Y; Tsukagoshi M; Sano R; Suzuki H; Sakurai N; Shibata D; Koyama T; Nakayama T
    Biochem Biophys Res Commun; 2014 Jan; 443(2):768-74. PubMed ID: 24342623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation.
    Norris SR; Barrette TR; DellaPenna D
    Plant Cell; 1995 Dec; 7(12):2139-49. PubMed ID: 8718624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.