These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25078089)

  • 1. On the lorentzian versus Gaussian character of time-domain spin-echo signals from the brain as sampled by means of gradient-echoes: Implications for quantitative transverse relaxation studies.
    Mulkern RV; Balasubramanian M; Mitsouras D
    Magn Reson Med; 2015 Jul; 74(1):51-62. PubMed ID: 25078089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information theoretic evaluation of Lorentzian, Gaussian, Voigt, and symmetric alpha-stable models of reversible transverse relaxation in cervical cancer in vivo at 3 T.
    Ciris P
    MAGMA; 2023 Feb; 36(1):119-133. PubMed ID: 35925432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new concept for improved quantitative analysis of reversible transverse relaxation in tissues with variable microscopic field distribution.
    Steidle G; Schick F
    Magn Reson Med; 2021 Mar; 85(3):1493-1506. PubMed ID: 33000529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.
    Zapp J; Domsch S; Weingärtner S; Schad LR
    Magn Reson Med; 2017 May; 77(5):1938-1945. PubMed ID: 27343149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
    Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J
    Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally-selective measurements of reversible and irreversible transverse relaxation rates from single spin-echo PRESS acquisitions in muscle.
    Mulkern RV; Nosrati R; Balasubramanian M
    NMR Biomed; 2020 Jun; 33(6):e4290. PubMed ID: 32167612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing gradient echo signal decays in gynecologic cancers at 3T using a Gaussian augmentation of the monoexponential (GAME) model.
    Ciris PA; Balasubramanian M; Damato AL; Seethamraju RT; Tempany-Afdhal CM; Mulkern RV; Viswanathan AN
    J Magn Reson Imaging; 2016 Oct; 44(4):1020-30. PubMed ID: 26971387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of gradient echo signal decays in healthy and cancerous prostate at 3T improves with a Gaussian augmentation of the mono-exponential (GAME) model.
    Ciris PA; Balasubramanian M; Seethamraju RT; Tokuda J; Scalera J; Penzkofer T; Fennessy FM; Tempany-Afdhal CM; Tuncali K; Mulkern RV
    NMR Biomed; 2016 Jul; 29(7):999-1009. PubMed ID: 27241215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurements of irreversible and reversible transverse relaxation rates in human basal ganglia at 7 T: making inferences about the microscopic and mesoscopic structure of iron and calcification deposits.
    Balasubramanian M; Polimeni JR; Mulkern RV
    NMR Biomed; 2019 Nov; 32(11):e4140. PubMed ID: 31322331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic sampling of the left side of long-TE spin echoes: a free lunch?
    Mulkern RV; Balasubramanian M
    MAGMA; 2018 Apr; 31(2):321-340. PubMed ID: 28884314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations.
    Balasubramanian M; Jarrett DY; Mulkern RV
    NMR Biomed; 2016 May; 29(5):553-62. PubMed ID: 26866627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring water content using T2 relaxation at 3T: Phantom validations and simulations.
    Meyers SM; Kolind SH; Laule C; MacKay AL
    Magn Reson Imaging; 2016 Apr; 34(3):246-51. PubMed ID: 26657977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T
    Qin S; Liu F; Turner IW; Yu Q; Yang Q; Vegh V
    Magn Reson Med; 2017 Apr; 77(4):1485-1494. PubMed ID: 27016390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of a three-dimensional pseudo-Voigt function for muon spin relaxation analysis of weakly magnetic materials.
    Umar MD; Hariyanto HL; Absor MAU
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38717269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla.
    Krafft AJ; Loeffler RB; Song R; Tipirneni-Sajja A; McCarville MB; Robson MD; Hankins JS; Hillenbrand CM
    Magn Reson Med; 2017 Nov; 78(5):1839-1851. PubMed ID: 28090666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous multi-angular relaxometry of tissue with MRI (SMART MRI): Theoretical background and proof of concept.
    Sukstanskii AL; Wen J; Cross AH; Yablonskiy DA
    Magn Reson Med; 2017 Mar; 77(3):1296-1306. PubMed ID: 26991525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate-Weighted CEST Contrast After Removal of Magnetization Transfer Effect in Human Brain and Rat Brain with Tumor.
    Debnath A; Hariharan H; Nanga RPR; Reddy R; Singh A
    Mol Imaging Biol; 2020 Aug; 22(4):1087-1101. PubMed ID: 31907844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transverse relaxation and flip angle mapping: Evaluation of simultaneous and independent methods using multiple spin echoes.
    McPhee KC; Wilman AH
    Magn Reson Med; 2017 May; 77(5):2057-2065. PubMed ID: 27367906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Value of transverse relaxometry difference methods for iron in human brain.
    Uddin MN; Lebel RM; Wilman AH
    Magn Reson Imaging; 2016 Jan; 34(1):51-9. PubMed ID: 26435459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.