These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25078133)

  • 1. Quantification of frequent-hitter behavior based on historical high-throughput screening data.
    M Nissink JW; Blackburn S
    Future Med Chem; 2014 Jun; 6(10):1113-26. PubMed ID: 25078133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens.
    Schorpp K; Rothenaigner I; Salmina E; Reinshagen J; Low T; Brenke JK; Gopalakrishnan J; Tetko IV; Gul S; Hadian K
    J Biomol Screen; 2014 Jun; 19(5):715-26. PubMed ID: 24371213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing HTS performance using BioAssay Ontology: screening and analysis of a bacterial phospho-N-acetylmuramoyl-pentapeptide translocase campaign.
    Moberg A; Zander Balderud L; Hansson E; Boyd H
    Assay Drug Dev Technol; 2014; 12(9-10):506-13. PubMed ID: 25415593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HTS promiscuity analyses for accelerating decision making.
    Böcker A; Bonneau PR; Edwards PJ
    J Biomol Screen; 2011 Aug; 16(7):765-74. PubMed ID: 21680863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-stoichiometric inhibition in integrated lead finding - a literature review.
    Klumpp M
    Expert Opin Drug Discov; 2016; 11(2):149-62. PubMed ID: 26653534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced HTS hit selection via a local hit rate analysis.
    Posner BA; Xi H; Mills JE
    J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the BioAssay Ontology for analyzing high-throughput screening data.
    Zander Balderud L; Murray D; Larsson N; Vempati U; Schürer SC; Bjäreland M; Engkvist O
    J Biomol Screen; 2015 Mar; 20(3):402-15. PubMed ID: 25512330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scopy: an integrated negative design python library for desirable HTS/VS database design.
    Yang ZY; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32892221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the biological promiscuity of high-throughput screening hits through DFT calculations.
    Curpăn R; Avram S; Vianello R; Bologa C
    Bioorg Med Chem; 2014 Apr; 22(8):2461-8. PubMed ID: 24656802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing Bayesian thinking to high-throughput screening for false-negative rate estimation.
    Wei X; Gao L; Zhang X; Qian H; Rowan K; Mark D; Peng Z; Huang KS
    J Biomol Screen; 2013 Oct; 18(9):1121-31. PubMed ID: 23720569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiversity of small molecules--a new perspective in screening set selection.
    Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M
    Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity-based screening techniques: their impact and benefit to increase the number of high quality leads.
    Bergsdorf C; Ottl J
    Expert Opin Drug Discov; 2010 Nov; 5(11):1095-107. PubMed ID: 22827747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harvesting classification trees for drug discovery.
    Yuan Y; Chipman HA; Welch WJ
    J Chem Inf Model; 2012 Dec; 52(12):3169-80. PubMed ID: 23110407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery.
    Evensen L; Micklem DR; Link W; Lorens JB
    Cytometry A; 2010 Jan; 77(1):41-51. PubMed ID: 19834964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding false positives in reporter gene assays: in silico chemogenomics approaches to prioritize cell-based HTS data.
    Crisman TJ; Parker CN; Jenkins JL; Scheiber J; Thoma M; Kang ZB; Kim R; Bender A; Nettles JH; Davies JW; Glick M
    J Chem Inf Model; 2007; 47(4):1319-27. PubMed ID: 17608469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequent hitters: nuisance artifacts in high-throughput screening.
    Yang ZY; He JH; Lu AP; Hou TJ; Cao DS
    Drug Discov Today; 2020 Apr; 25(4):657-667. PubMed ID: 31987936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
    Chakravorty SJ; Chan J; Greenwood MN; Popa-Burke I; Remlinger KS; Pickett SD; Green DVS; Fillmore MC; Dean TW; Luengo JI; Macarrón R
    SLAS Discov; 2018 Jul; 23(6):532-545. PubMed ID: 29699447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.