These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25078167)
1. Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data. Banakh VA; Smalikho IN; Rahm S Opt Lett; 2014 Aug; 39(15):4321-4. PubMed ID: 25078167 [TBL] [Abstract][Full Text] [Related]
2. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar. Banakh VA; Smalikho IN; Falits AV Opt Express; 2017 Sep; 25(19):22679-22692. PubMed ID: 29041575 [TBL] [Abstract][Full Text] [Related]
3. Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Frehlich R Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185 [TBL] [Abstract][Full Text] [Related]
4. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model. Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943 [TBL] [Abstract][Full Text] [Related]
5. Wind turbine wake visualization and characteristics analysis by Doppler lidar. Wu S; Liu B; Liu J; Zhai X; Feng C; Wang G; Zhang H; Yin J; Wang X; Li R; Gallacher D Opt Express; 2016 May; 24(10):A762-80. PubMed ID: 27409950 [TBL] [Abstract][Full Text] [Related]
6. Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer. Zhang H; Zhu L; Sun G; Zhang K; Xu M; Liu N; Chen D; Wu Y; Cui S; Luo T; Li X; Weng N Appl Opt; 2022 Nov; 61(33):9762-9772. PubMed ID: 36606804 [TBL] [Abstract][Full Text] [Related]
7. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness. Zhai X; Wu S; Liu B Opt Express; 2017 Jun; 25(12):A515-A529. PubMed ID: 28788882 [TBL] [Abstract][Full Text] [Related]
8. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar. Yuan J; Xia H; Wei T; Wang L; Yue B; Wu Y Opt Express; 2020 Dec; 28(25):37406-37418. PubMed ID: 33379576 [TBL] [Abstract][Full Text] [Related]
9. Coherent launch-site atmospheric wind sounder: theory and experiment. Hawley JG; Targ R; Henderson SW; Hale CP; Kavaya MJ; Moerder D Appl Opt; 1993 Aug; 32(24):4557-68. PubMed ID: 20830118 [TBL] [Abstract][Full Text] [Related]
10. Pulse Accumulation Approach Based on Signal Phase Estimation for Doppler Wind Lidar. Liang N; Yu X; Lin P; Chang S; Zhang H; Su C; Luo F; Tong S Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610272 [TBL] [Abstract][Full Text] [Related]
11. Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence. Guérit G; Drobinski P; Flamant PH; Augère B Appl Opt; 2001 Aug; 40(24):4275-85. PubMed ID: 18360465 [TBL] [Abstract][Full Text] [Related]
12. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System. Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511 [TBL] [Abstract][Full Text] [Related]
13. Effects of the earth's atmosphere on a spaceborne IR Doppler wind-sensing system. Post MJ Appl Opt; 1979 Aug; 18(15):2645-53. PubMed ID: 20212724 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of the effect of refractive turbulence on coherent lidar return statistics in the atmosphere. Banakh VA; Smalikho IN; Werner C Appl Opt; 2000 Oct; 39(30):5403-14. PubMed ID: 18354537 [TBL] [Abstract][Full Text] [Related]
15. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements. Pal S Sci Total Environ; 2016 Jun; 554-555():17-25. PubMed ID: 26950615 [TBL] [Abstract][Full Text] [Related]
16. 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Wang C; Xia H; Shangguan M; Wu Y; Wang L; Zhao L; Qiu J; Zhang R Opt Express; 2017 Aug; 25(17):20663-20674. PubMed ID: 29041745 [TBL] [Abstract][Full Text] [Related]
17. Complex terrain experiments in the New European Wind Atlas. Mann J; Angelou N; Arnqvist J; Callies D; Cantero E; Arroyo RC; Courtney M; Cuxart J; Dellwik E; Gottschall J; Ivanell S; Kühn P; Lea G; Matos JC; Palma JM; Pauscher L; Peña A; Rodrigo JS; Söderberg S; Vasiljevic N; Rodrigues CV Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265025 [TBL] [Abstract][Full Text] [Related]
18. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network. Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030 [TBL] [Abstract][Full Text] [Related]